Wangove pločice (01. siječnja 2012. godine)

kvadratne wangove pločice, crveno i bijelo

Prošlu godinu sam započeo s postom Moire uzorak. Kao da je bilo jučer. Nisam bio uvjeren da ću ispuniti cijelu godinu "Konstrukcije stvarnosti" i mislio sam da će cijeli taj pothvat završiti prošle godine. Ipak nije i otvaram još jednu godinu s još jednim "površinskim" postom.

Ovaj put se radi o Wangovim pločicama (slika iznad). Radi se o neperiodičnom popločavanju ravnine korištenjem nekoliko predefiniranih "pločica" koje se postavljaju na dvodimenzionalnu mrežu (premda lako mogu zamisliti i Wangove pločice u 3D - o tome možda neki drugi put). Detalj gore prikazane Wang-popločane ravnine prikazan je na slici ispod.

kvadratne wangove pločice, crveno i bijelo, detalj

Sa slike gore vidi se da je ravnina popločana sa samo dvije Wangove pločice, a može se vidjeti i da se jedna od te dvije pločice može dobiti rotacijom druge za 90 stupnjeva. Stoga su pločice posve uporabne - takve, posve iste, pločice mogle bi se masovno proizvoditi, a kreativni majstor za postavljanje pločica bi ih složio u neponavljajuću zanimljivu strukturu odlučujući svaki put o rotaciji pločice koju postavlja.

Moje su Wangove pločice zamišljene da stvaraju krivuljne forme i sastavljene su od dijelova kružnice (točnije, spljoštenog torusa) raspoređenih tako da se slaganjem glatko nastavljaju. Moguće je naravno zamisliti i mnoga druga rješenja. Ako vas priča zanima, započnite istraživanje s >> Wikipedijinim člankom, Wang tile.

Ja sam se malo poigrao s raznim vizualnim varijantama svog "zmijskog" Wang rješenja, a još jedna od njih, na kvadratnoj mreži prikazana je u crno-plavoj verziji na slici ispod.

kvadratne wangove pločice, crno i plavo

Wangove pločice koriste se u računalnoj grafici za izradu tekstura velikih objekata, pa i cijele ravnine. Radi se o tome da se uvjerljive neponavljajuće teksture mogu izgraditi od nekoliko pametno odabranih uzoraka, pločica koje se slažu u periodičnu 2D mrežu.

Naravno, 2D mreža ne mora biti nužno kvadratna. Na slici ispod prikazane su Wangove šesterokutne pločice.

šesterokutne wangove pločice, žuto i zeleno

U ovom slučaju potrebno je 5 Wangovih pločica, ali radi se o samo dvije osnovne od kojih se ostale mogu dobiti rotacijom (2 + 3). Detalj ovog popločavanja prikazan je na slici ispod.

šesterokutne wangove pločice, žuto i zeleno, detalj

Šesterokutno Wangovo popločavanje u narančasto-crnoj verziji prikazano je na slici ispod. Ovdje su torusni i cilindrični dijelovi samo malo spljošteni tako da se jasno vidi njihova trodimenzionalnost.

šesterokutne wangove pločice, narančasto i crno

I na kraju, zanimljivo je spomenuti i da se jedan raniji post vjerojatno može postaviti u kategoriju šesterokutnog Wangovog popločavanja. Radi se o postu >> Periodično - neperiodično.

<< Neuništivi dokazi moje ljubavi Nema me >>

Zadnji put osvježeno: 01. siječnja 2012. godine