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Abstract
We present a comprehensive discussion of the mechanisms leading to the manifestation of
phonon-mediated bound state resonance features in the energy resolved distributions of thermal
energy He atoms inelastically scattered from weakly corrugated surfaces. We critically examine
the various effects that may either favour or hinder experimental detection of these features and
point out the conditions under which their observability may be attempted in view of the recent
developments in high resolution He atom scattering spectroscopy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Various types of the scattering resonance effects have been
discussed in the interpretation of thermal energy atomic
and molecular beam scattering from surfaces. Already the
earliest molecular beam experiments carried out in the 1930s
on alkali halide single-crystal surfaces provided evidence
for the diffraction of atomic particles in scattering from
periodic structures [1, 2]. The observed losses in diffracted
intensities for specific incident beam angles were soon
thereafter interpreted as being due to elastic transitions of the
incident beam particles into and out of the bound states of the
static particle–surface potential by subsequent exchange of the
multiples of reciprocal surface lattice wavevectors [3]. This
specific elastic resonant scattering process is usually referred
to as the diffraction-mediated selective adsorption (DMSA).
Since then the maxima and minima in angular and energy
distributions of scattered thermal energy atomic or molecular
beams have been extensively studied and reviewed [4–14]
and besides the DMSA several other combinations of elastic
and inelastic phonon-induced transitions into the continuum
and bound states of the projectile–surface potential have been
invoked to interpret the experimental data. These mechanisms
have been commonly classified according to the net processes
whose signatures may manifest in the angular and energy
distributions of scattered beams [15, 16]:

(1) Direct (nonresonant) inelastic transitions of the projectile
between the continuum states of the projectile–surface
potential by excitation and/or annihilation of phonons in

the target. These processes have been comprehensively
reviewed in [13]. Here for specific scattering conditions
the enhancements of phonon loss or gain spectral
intensities can be caused only by the various types of
kinematic focusing effects [17–19].

(2) Elastic DMSA transition of the projectile from a
continuum into a bound state of the projectile–surface
potential followed by inelastic phonon-mediated transition
back into a continuum state.

(3) Inelastic phonon-mediated projectile transition into a
bound state followed by elastic diffraction-mediated
selective desorption (DMSD) transition into a continuum
state.

(4) Elastic DMSA into a bound state followed by inelastic
phonon-mediated transition into another bound state and
finally DMSD transition back into a continuum state.

Mechanisms (2)–(4) require exchange of the reciprocal
two-dimensional (2D) surface lattice vectors G either in the
incident or the exit scattering channels, or both. Therefore
these mechanisms can be operational only on surfaces with
corrugation large enough to supply the appropriate G’s with
non-negligible probability. However, for flat surfaces which
exhibit very weak diffraction patterns (i.e. small intensities
of non-zeroth order diffraction peaks) the role of G-mediated
transitions in the incident and exit channels is expected
to be small. In this case another mechanism, which is
complementary to mechanism (1) referred to above, namely

(5) phonon-mediated or phonon-assisted inelastic transitions
involving intermediate bound states,
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Figure 1. (a) Right panel: structure of (
√

3 × √
3)R30◦ monolayer of Xe atoms (shaded circles) on Cu(111) surface, with examples of two

high symmetry directions (azimuths) in the substrate surface plane. Left panel: two-dimensional Brillouin zones of Cu(111) surface (dashed
lines) and of Xe adlayer (full lines). (b) He atom angular distribution along [11̄0] azimuth of the substrate from (

√
3 × √

3)R30◦ Xe
monolayer on Cu(111) for incident wavevector ki = 9.2 Å

−1
(Ei = 45 meV) and surface temperature 60 K. Peak intensities normalized to the

height of specular peak.

may remain the principal source of resonance effects in the
spectra of scattered beam particles. In the following this
mechanism will be referred to as phonon-mediated bound state
resonance (PMBSR) scattering. Note also that in all these
considerations the projectile coupling to electronic excitations
in the target are neglected since their role becomes important
in a different regime of scattering of more energetic neutral or
ionized beams from metal surfaces [20].

The effects of PMBSR are expected to manifest
themselves most clearly in the angular and energy resolved
distributions or the scattering spectra of light closed shell
atoms and molecules, typically He, Ne, H2 and D2,
scattered at thermal energies from atomically flat surfaces
that produce negligible diffraction intensities. Selection of a
particular prototype system for studying the PMBSR effects
must therefore meet two requirements which facilitate their
detection in the scattering spectra of atomic and molecular
beams. These are (i) weak matrix elements of the corrugation
potential that determine diffraction intensities, and (ii) strong
projectile coupling to surface phonons. In this respect
the (111) and (100) surfaces of fcc metals and smooth
atomic overlayers offer prototype systems for experimental and
theoretical studies of the effects induced by PMBSR. However,
it should be pointed out that (i) and (ii) are the necessary
but not sufficient conditions for discernible PMBSR effects
in the scattering spectra because their manifestations may be
hindered or suppressed by other mechanisms and effects that
can also influence the scattering event.

The PMBSR mechanism rests on non-model-specific
kinematic conditions arising from the energy and 2D parallel
momentum conservation laws and as such should appear as
a physical ingredient in any realistic model description of
inelastic atom–surface scattering by phonons. However, the
properties and limitations of particular models, as well as their
(approximate) solutions, may not always retrieve the effects
of PMBSR in a realistic fashion. The aim of this article
is to critically examine and quantify the effects of PMBSR
as predicted by several theoretical models that have been
commonly employed in the interpretation of inelastic atom–
surface scattering experiments. In this respect the present

article complements the earlier review of thermal energy atom
scattering by surface phonons [13] with the new theoretical
results obtained meanwhile.

To investigate the role of PMBSR in atom–surface
scattering we shall select the prototype system in which
monoenergetic He atom beams are scattered from the
commensurate monolayer phase (

√
3 × √

3)R30◦ of Xe atoms
adsorbed on Cu(111) surface (see figure 1(a)). This system
has been investigated in detail by the thermal energy He atom
scattering (HAS) technique [21] and found to satisfy conditions
(i) and (ii) quoted in the previous paragraph. The observed
higher order diffracted beam intensities are very weak and
strong coupling to phonons is realized through the interaction
of the projectile with vertically or S-polarized adlayer localized
vibrational modes. These modes are practically dispersionless
over the first surface Brillouin zone with excitation energy
h̄ωQ = h̄ωS = 2.7 meV (Einstein-like S-phonons). The He–
surface interaction potential, that can be conveniently modelled
by using empirical or theoretically derived parameters (see
below), exhibits a shallow potential well which accommodates
bound states with energies in the range of few meV, i.e. of
the order of S-phonon excitation energies. Other relevant
quantities characterizing the He → Xe/Cu(111) collision
system are listed in [13] and [21].

In section 2 we first analyse theoretically the effects
of the various forms of projectile–phonon interactions on
inelastic scattering intensities for the prototype system
He → Xe/Cu(111) in the regime dominated by nonresonant
projectile transitions between the continuum states of surface
potential. In section 3 we extend this analysis to the scattering
regime in which phonon-mediated transitions into and out of
the bound states of the surface potential may give a significant
contribution to the total inelastic scattering intensities. We
discuss several important effects that may influence such
PMBSR transitions and investigate their interplay in the
elastic and inelastic scattering intensities calculated in different
theoretical models of atom–surface scattering. Lastly, in
section 4 we discuss the possibility of observation of PMBSR-
induced features in the scattering spectra and point out the
conditions that may facilitate their detection.
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Figure 2. Comparison of the theoretical angular resolved energy
transfer in He → Xe/Cu(111) collisions (full lines) calculated in the
EBA (see [28]) with the values deduced from available experimental
HAS-TOF spectra (open symbols), given as a function of the
substrate temperature Ts for the scattering conditions as denoted.
Inset: comparison of experimental multiphonon HAS (open circles)
and theoretical (full curve) scattering spectrum corresponding to the
scattering conditions of the experimental point denoted by arrow.

2. Descriptions of nonresonant inelastic scattering:
effects of the order of coupling

In order to better understand the signatures and interplay of
various resonance mechanisms in the atomic and molecular
beam scattering from surfaces we shall first discuss the
regime in which the nonresonant scattering mechanism (1) is
dominant. In the case of the selected prototype system this
is expected for incident He atom beam energies exceeding
several times the S-phonon excitation energies. Figure 1(b)
shows the angular resolved HAS spectrum (diffraction pattern)
along [11̄0] azimuth of the substrate for He atom incident
wavevector ki = 9.2 Å

−1
(Ei = 45 meV) and the surface

temperature 60 K. The ratio of the intensities of specularly
and higher order diffraction peaks is nearly two orders of
magnitude which means that condition (i) pointed out above
is well satisfied. This is in stark contrast with Xe surfaces of
similar geometric structure that exhibit stronger intensities of
higher order diffraction peaks (see discussions in [22, 26, 27]).
Experimental points shown in the inset in figure 2 exemplify
a typical angular- and energy resolved HAS spectrum which
for the initial He atom kinetic energy Ei = 45 meV exhibits a
multiphonon structure arising from the multiples of S-phonon
loss and gain events. This confirms that the projectile coupling
to vertically polarized S-modes in Xe monolayer is strong in
the experimental range of thermal He beam energies, i.e. that
condition (ii) is also well satisfied.

Theoretical interpretations of the various aspects of the
He → Xe/Cu(111) scattering spectra in this collision regime
have been given under the assumption of linear projectile–
phonon coupling and by resorting to the exponentiated
distorted wave Born approximation (EBA) in the calculations
of multiphonon scattering amplitudes [21]. The formulation
of exact multiphoton atom–surface scattering spectra in the
case of linear projectile–phonon coupling, their relation to
experimental spectra and to calculations based on the various

0

-2

6

4

2

z

V(z)

Figure 3. Schematic illustration of nonresonant inelastic scattering
processes described by mechanism (1) of section 1 in which the
projectile moving in an eigenstate of the surface potential V (z) with
incident energy Ei makes inelastic transitions (denoted by dashed
vertical arrows) to the continuum states of lower energy by
subsequent excitations of two phonons of energy h̄ωS. The
probability of this process, P2(Ei), can be calculated for 1D model
numerically exactly by using the CC approach and, as shown in
figure 5, also reliably described analytically in the EBA.

approximations, with a special emphasis on the applicability of
the EBA, has been reviewed for several prototype atom–surface
scattering systems in [13]. For the sake of later discussions we
only need to reiterate that the validity of the EBA is restricted
to the regime of weak correlations between successive inelastic
scattering events in which the projectile excites or absorbs
phonons. Such processes are dominated by mechanism (1)
and their illustration is given in figure 3. Thus the condition
of weak correlations excludes resonant scattering in which the
correlations between successive events are strong.

A comparison of the experimental energy resolved HAS
spectrum and the corresponding spectrum calculated in the
EBA is presented in the inset of figure 2. Another quantity
that can be derived from the experimental HAS spectra and
calculated theoretically is the angular resolved mean energy
transfer in the scattering event, μr, for given projectile incident
energy and fixed initial and scattered angles, θi and θf,
respectively (for definition and derivation of μr see [28]).
A comparison of the thus defined μr obtained by numerical
integration of the first moment of a number of experimental
and theoretical spectra of the kind shown in the inset of
figure 2 is illustrated in the main body of the picture [28].
The overall excellent agreement between the measured and
theoretical spectra and energy transfers calculated in the EBA
signifies that in the collision regime characterized by the
dominance of mechanism (1) the correlations between the
successive scattering events should indeed be weak and that
possible signatures of phonon-induced resonance effects must
be sought at somewhat lower projectile incident energies at
which transitions into bound states appear more probable. This
conjecture is further corroborated by the calculation of mean
number of phonons excited in the continuum-to-continuum
(c–c) and continuum-to-bound state (c–b) transitions of the
projectile described by the so called Debye–Waller exponent

3
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Figure 4. (a) Plot of the mean number of phonons or the DWE shown as a function of He atom incident energy Ei for the incident angle
θi = 50◦ and zero substrate temperature. Contributions from c–c and c–b transitions are denoted by short-dashed and long-dashed curves,
respectively. (b) Same for incident angle θi = 0◦.

Figure 5. Scattering probabilities for elastic (upper panel),
one-phonon inelastic (centre panel) and two-phonon inelastic (lower
panel) He atom scattering from a vibrating Xe atom on a cold
surface, calculated in 1D models for the three types of interactions
within the scattering formalisms discussed in the text and shown as
functions of the incoming He atom energy Ei. Solid line: CC result
for coupling to all orders in oscillator displacement; dotted line: CC
result for linear coupling; dashed line: CC result for linear plus
quadratic coupling; dashed–dotted line: EBA result; chained squares:
simple DWBA result for coupling to all orders. Note that P0 = 1 and
P1 = 0 below the one-phonon excitation threshold at h̄ωS, and
P2 = 0 below the two-phonon excitation threshold at 2h̄ωS.

(DWE) for the same collision system [19]. As shown in
figures 4(a) and (b) the contribution of c–b transitions to
the DWE becomes very small for incident He atom energies
exceeding 10 meV. This signals low probabilities of inelastic
resonant c → b → c transitions at higher Ei.

From the above discussion we may assert that within the
described scattering scenario governed by mechanism (1) the

possible shortcomings of the EBA description of nonresonant
inelastic atom–surface scattering may arise only from the
neglected higher order (i.e. nonlinear) projectile coupling to
phonons. To explore this possibility a detailed analysis of
the effects of higher order projectile–phonon coupling on
the inelastic scattering probabilities can be undertaken within
a model which contains all the salient features of inelastic
scattering encompassed by mechanism (1), on the one hand,
and is amenable to exact solutions for different orders of
couplings, on the other hand. Since this step does not involve
the transitions into bound states for the reasons stated in the
preceding paragraph we may consider a simplified projectile–
surface interaction described by a purely repulsive exponential
potential characterized by the softness parameter α appropriate
to the studied system. Second, as we do not expect strong
effects arising from the dimensionality of scattering event in
the case of nonresonant transitions of the projectile incident
normal to the surface (cf figure 4(b)) and coupled to vertically
polarized phonon modes, we shall restrict our analysis to
a one-dimensional (1D) model in which the projectile at
distance z outside the surface is coupled to all powers of the
displacement Z of a surface Einstein oscillator of frequency
ωS. Such a model can be solved exactly numerically by
the coupled channels (CC) method for arbitrary power(s) of
projectile–oscillator coupling [29]. The calculations are based
on expanding the full potential V (z–Z) acting on the projectile
in powers of Z and treating one or more Z -dependent terms as
interaction potentials, viz.

V (z–Z) = V (z) + Z V1(z) + Z 2V2(z) + · · ·
= V (z) + Vint(z, Z). (1)

Here V (z) is the static projectile–surface potential, V1(z) =
V ′(z), V2(z) = −V ′′(z)/2 etc, and primes denote derivatives
with respect to Z for Z = 0. The CC equations
yielding the scattering amplitudes are then solved for projectile
motion in V (z) under the action of perturbations Z V1(z),
Z V1(z) + Z 2V2(z), etc, and finally for full nonlinear coupling
Vint(z, Z) = V (z–Z) − V (z). The results obtained for elastic,
single-phonon, two-phonon and full multiphonon scattering
probabilities are shown in figure 5. Also shown in the figure
are the results of EBA calculations obtained for linear coupling
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and the results of simple distorted wave Born approximation
(DWBA) for full Vint(z, Z).

Theoretical results depicted in figure 5 clearly illustrate
several important features arising in the descriptions of
inelastic atom–surface scattering within the discussed models.
The first important message that can be deduced from the
behaviour of elastic scattering probability P0, also known as
the Debye–Waller factor of the scattering spectrum [13, 30],
is an excellent agreement between the results of exact CC
calculations for the sum of linear and quadratic and for the full
nonlinear coupling in the whole range of projectile incoming
energies. This means that the nonlinear coupling effects are
described to a high degree of accuracy already by the sum
of linear and quadratic coupling terms. Second, the EBA
formalism [13] that is based on an approximate treatment of
linear projectile–phonon coupling to all orders in the coupling
constant is in this scattering regime in excellent agreement with
the exact numerical results.

Almost identical conclusions pertain to the behaviour of
one-phonon scattering probabilities P1. As expected, the exact
linear coupling result slightly deviates from the exact nonlinear
coupling results as it does not pick up all the processes that
are present when the nonlinear coupling terms are switched
on. Here we also show the one-phonon scattering probability
calculated in the DWBA applied to the full nonlinear coupling
interaction Vint(z, Z). For very low incoming energies near
the one-phonon excitation threshold Ei = h̄ωS = 2.7 meV,
i.e. in the one-phonon scattering limit in which linear coupling
yields the dominant contribution, the scattering probability
calculated in the DWBA with full nonlinear coupling is in
a good agreement with the other ones. However, with the
increase of Ei the deviations from the exact result soon become
large and signify the break down of this approximation due to
the nonunitary treatment of all the scattering events induced by
the full nonlinear projectile–phonon interaction.

Very similar trends are observed in the behaviour of two-
phonon scattering probabilities (P2 in figure 5). Again, the
EBA results are in a very good agreement with the exact
ones and hence this formalism proves to be a very reliable
approximate method for treating nonresonant multiphonon
scattering in the quantum regime. Here a striking feature is
a complete failure of the DWBA with full nonlinear coupling
in the description of the two-phonon scattering probabilities.

In view of the discussed exact numerical results and
the earlier established excellent agreement between the
measured and calculated EBA scattering probabilities for
several prototype systems [13, 21], the most important
conclusion that can be drawn from figure 5 is that in
nonresonant thermal energy atom–surface scattering regime
the main contribution to the two-phonon and higher order
phonon scattering probabilities comes from successive one-
phonon scattering events shown schematically in figure 3
and not from the processes of simultaneous multiple phonon
excitations that arise in nonlinear coupling models. In other
words, the present analysis shows that higher order projectile–
phonon couplings can play only a minor role in nonresonant
inelastic scattering. However, this ceases to be the case
in resonant inelastic atom–surface scattering processes to be
discussed in the next section.

3. Descriptions of resonant inelastic scattering:
interplay between the order of coupling and
dimensionality of the model

Inelastic scattering processes involving bound state resonances
may arise as a result of the various combinations of projectile
c–c, c–b and b–c transitions induced by the linear and
nonlinear coupling to phonons. Upper panel in figure 6
illustrates schematically two possible inelastic processes in
which a projectile moving in the surface potential V (z) with
initial energy Ei is scattered into the same final state of
energy Ef = Ei − h̄ωS by emissions of one real and one
virtual phonon. Here the same final state of the system can
be reached through projectile motion in different scattering
channels involving different types of phonon excitation events
(interaction vertices) and thereby different propagation in
the intermediate states of surface potential. This is further
illustrated in the lower two panels of figure 6. The lower
left-hand side panel illustrates the scattering amplitude for a
process in which the projectile first makes a c–c transition by
emitting one real phonon through linear coupling to the phonon
field, and subsequently resonant c–b and b–c transitions into
and out of the intermediate bound state |1〉 by emission and
reabsorption of a virtual phonon, respectively, again arising
from the linear coupling. The lower right-hand side panel
illustrates the scattering amplitude for a process in which the
projectile first makes a c–b transition by simultaneous emission
of two phonons arising from the quadratic coupling, continues
to propagate in the bound state until the reabsorption of one of
the emitted phonons through linear coupling brings it back into
the final continuum state of energy Ef = Ei − h̄ωS. Therefore
the scattering amplitudes depicted in two lower panels of
figure 6 represent different bound state-assisted resonance
processes induced by different projectile interactions with
phonons that lead to the same final scattering state. Here
it should be pointed out that the total quantum mechanical
amplitude of a scattering event characterized by the projectile
final state | f 〉 and a fixed number of real phonons excited in
the system is given by the sum of amplitudes of all possible
intermediate state propagations leading to completed scattering
events specified by the same final state quantum numbers.
These include nonresonant and resonant inelastic transitions
illustrated schematically in figures 3 and 6, respectively, and
therefore strong interference effects may be expected in the
total scattering probability given by the absolute square of the
total scattering amplitude.

The above discussion shows that the enlargement of
the scattering phase space by inclusion of the bound
states of atom–surface potential and the extension of
dynamic projectile–surface interaction by nonlinear coupling
to phonons may greatly increase the multitude of scattering
channels or quantum pathways that contribute to the total
scattering amplitude. This increase may be further augmented
by the dimensionality of the scattering models because higher
dimensions support larger manifolds of intermediate and
resonant scattering channels. In the following we shall
investigate consequences of the interplay between these effects
which are expected to give rise to various interference and
resonance features in the total scattering probabilities.
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Figure 6. Upper panel: schematic illustration of inelastic scattering of the projectile of incident energy Ei either through consecutive
emissions of two phonons and reabsorption of one phonon in c → c′ → b → c′ resonant transition described by linear projectile–phonon
coupling interactions, or through simultaneous emission of two phonons and reabsorption of one phonon in c → b → c′ resonant transition
described by quadratic and linear projectile–phonon coupling interactions, respectively. Full arrows symbolically denote projectile motion in
the eigenstates of static surface potential V (z) and vertical dashed arrows denote interstate transitions. Lower panels: diagrammatic
representation of scattering amplitudes of the same processes. Full lines denote projectile propagators in the eigenstates of V (z) and wiggly
lines the propagators of phonons excited in the vertices corresponding to linear (filled circle) and quadratic coupling terms (filled squares) in
the expansion of V (z, Z) (see equation (1)).

Figure 7. Quantum probability of elastic scattering or the Debye–Waller factor, P0, calculated in the 1D model of He → Xe/Cu(111)
scattering by taking into account the effects of phonon-mediated bound state resonances for the case of (a) linear, (b) linear plus quadratic,
(c) full nonlinear projectile–phonon coupling.

The role of phonon-mediated bound state resonance
effects in He → Xe/Cu(111) scattering were first investigated
within 1D models with projectile coupling to vertical
vibrations of a surface Einstein oscillator through the full
nonlinear interaction potential V (z–Z)–V (z) that was treated
by the CC method [31, 32]. Here we present comparisons
of the results of CC calculations for two typical measures of
the (in)elasticity of the scattering event: the elastic scattering
probability P0 (Debye–Waller factor) and the total energy
transfer μ to phonons. The calculations are carried out in
1D scattering models with linear, linear and quadratic, and
full nonlinear coupling by following the procedure outlined
in section 2 and [29]. The total interaction potential V (z–Z)

is taken in the form of a Morse potential (see figures 2
and 3 in [32]) fitted so as to be in accord with the earlier
calculated interactions of He atoms with the Cu substrate [33]
and Xe atoms in the monolayer [22], as well as with
the experimental [23] and calculated [24, 25] structure of
Xe/Cu(111) adsorption system.

The CC results for the Debye–Waller factor and total mean
energy transfer obtained in three 1D models with different
coupling are shown in figures 7 and 8, respectively, as functions
of the projectile incoming energy. The most significant
feature of the computed P0 and μ is the appearance of
resonance structures (sharp maxima and minima) for incident
projectile energies equal to the various possible combinations

6
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Figure 8. Mean energy transfer or the projectile energy loss, μ, calculated in the 1D model of He → Xe/Cu(111) scattering by taking into
account the effects of phonon-mediated bound state resonances for the case of (a) linear, (b) linear plus quadratic, (c) full nonlinear
projectile–phonon coupling.

of resonance conditions Ei = ε j + nh̄ωS where ε j ’s denote
energies of bound states of V (z) and n denotes the number
of phonons exchanged in a resonant transition (see figure 3
in [32]). The resonance structures are most pronounced in
the case of linear projectile phonon coupling (i.e. coupling
through Z V1(z) only) whereas their intensities at higher Ei

are reduced if higher order (nonlinear) coupling terms are
taken into account together with the linear one. Thus, for
full nonlinear coupling the resonance structures are clearly
discernible only for Ei < 10 meV. This implies that the
enlargement of the multitude of scattering channels or quantum
pathways leading to the same final state, which arises from
adding the nonlinear coupling terms to the linear interaction,
acts so as to suppress sharp resonance features in the scattering
probabilities. This enlargement is expected to be more
pronounced at higher incident energies in which case it may
give rise to stronger destructive interference effects in the total
scattering probabilities and consequently to weaker resonance
effects.

The presented results of calculations of the Debye–Waller
factor and total mean energy transfer based on the 1D model
of He → Xe/Cu(111) scattering clearly indicate the possibility
of manifestation of PMBSR effects in the energy distributions
of inelastically scattered beams, at least for lower incident
energies at which the manifold of open scattering channels is
not large enough to cause complete suppression of resonance
features by destructive interference. However, as the manifold
of open scattering channels is augmented also by the increase
of dimensionality of the scattering event, it is necessary to
go beyond 1D models in order to predict the occurrence
and observability of PMBSR effects in surface scattering
experiments.

Theoretical treatments of inelastic resonance scattering in
two or three spatial dimensions by the CC method require
extensions of the above used approach due to enlargement of
the manifold of intermediate and final states (and thereby of the
scattering channels) which now depend on the projectile final
state energy and wavevector components in the direction(s)
of translational invariance of the surface (one component in
2D models and two components in 3D models of atom–
surface scattering). Analogous situation arises in the treatment
of multidimensional phonon configuration space in which
frequencies and wavevectors are connected through 1D and 2D

dispersion relations in 2D and 3D model descriptions of surface
vibrations, respectively. These enlargements of the scattering
phase space enormously increase the number of channels
needed for converged numerical CC calculations so that they
are currently not feasible unless some type of phase space
restriction is introduced. In the case of nondispersive Einstein
phonons a simplification arises in counting the excitation
quanta and thereby of the scattering channels in inelastic
transitions because the Fock space of boson excitations is
discrete in energy. Thus it is possible to select the scattering
states of the system which differ by the multiples of boson
excitation energies nh̄ωS and restrict n to be of the order of
the estimated mean number of phonons excited in a scattering
event for a given set of initial state parameters. A tractable
restricted Fock space–coupled channel (RFCC) approach to
solving the CC equations describing inelastic phonon-assisted
resonant scattering beyond 1D was introduced and elaborated
in [34] for the case of linear projectile–phonon coupling
Z V1(z). In this method the multidimensional phonon phase
space is restricted to the various combinations of phonon states
comprising one, two,. . ., and n̄ phonons where n̄ is equal
to the anticipated or independently estimated mean number
of phonons excited in the scattering event. Introduction of
an upper bound on the number of phonon states enables
correct numerical treatment of momentum transfer in inelastic
transitions that is prerequisite for accurate descriptions of the
scattering event.

Earlier calculations of the energy resolved spectra describ-
ing He → Xe/Cu(111) nonresonant scattering [21, 19, 29] in-
dicated that n̄ � 2 in the range of experimental beam energies.
Hence, in the present RFCC calculations of resonant scatter-
ing probabilities we shall assume the same n̄ and restrict the
phonon Fock space to zero, singly and doubly excited phonon
states. The construction of the mesh of phonon wavevectors in
the first surface Brillouin zone and the counting of total num-
ber of the thus obtained states in 1D, 2D and 3D was described
in detail in [34]. The next important step in this type of calcu-
lation is a test of reliability or convergence of RFCC calcula-
tions with the selected restricted Fock space of phonon states
for given initial scattering conditions. In figure 9 we illustrate
this by comparing the Debye Waller factor P0 for the case of
a 2D model description of He → Xe/Cu(111) scattering cal-
culated in the RFCC approach [34] and the multiphonon EBA

7



J. Phys.: Condens. Matter 20 (2008) 224002 A Šiber and B Gumhalter

Figure 9. Comparison of two-phonon RFCC and multiphonon EBA
results for the Debye–Waller factor P0 calculated in a 2D He
atom–surface scattering model as a function of normal incident
energy Ei. For model parameters see [34].

that is exact in the low and high incident energy limits and also
produces accurate off-resonance results at intermediate ener-
gies.

The RFCC and EBA results displayed in figure 9
significantly differ only in the low energy region where P0 is
affected by resonant projectile propagation through the bound
states by emission and reabsorption of phonons. Inset shows
the region of high incident energies in which the validity of
the 2D RFCC calculation breaks down due to the neglect
of Fock states comprising more than two excitation quanta.
In the EBA, the average number of excited phonons n̄ and
P0 are related through P0 = exp(−n̄) [13]. Hence, the
displayed two-phonon RFCC results are expected to be reliable
in the scattering regime in which P0 > exp(−2) = 0.135,
i.e. above the dotted line in the inset. The EBA predicts
that this regime is reached for Ei ∼ 150 meV, which is
precisely where the RFCC results begin to exhibit pronounced
oscillatory behaviour and deviation from the corresponding
asymptotically exact multiphonon EBA values. Hence, an
excellent agreement between the results for off-resonant P0 in
the range 0 � Ei � 150 meV obtained from two completely
different algorithms supports the validity of the described
two-phonon RFCC approach for studying the interplay of
multiphonon and resonant scattering at low Ei. This is crucial
because the resonant scattering effects predicted in the RFCC
approach cannot be encompassed by the simplest version of the
EBA even in the 1D case [31, 32].

The thus established validity of the two-phonon RFCC
for treating the interplay of multiphonon and resonant effects
in the discussed case of He atom scattering from Einstein
phonons enables the assessment of the effect of dimensionality
on these processes. Figure 10 displays a comparison of
the elastic scattering probabilities P0 for He atoms incident
normal to the ‘surface’ of a 1D, 2D and 3D system. These
results demonstrate that the inelasticity of scattering and the
bound state resonance effects are reduced as the dimensionality
increases. In the 1D case of collinear scattering the on-
the-energy and momentum-shell requirements allow only the

Figure 10. Comparison of the RFCC Debye–Waller factors P0

arising from interplay of Einstein phonon exchange and bound state
resonance effects calculated in 1D, 2D and 3D scattering models, and
the P0 obtained in 3D EBA (dashed line) for multiphonon He atom
scattering. For linear projectile–phonon coupling the resonances
appear around Ei = ε1 + 2h̄ωS = 3.83 meV and
Ei = ε2 + 2h̄ωS = 5.3 meV.

inelastic transitions for zero phonon wavevector and hence they
are all governed by the maximum values of matrix elements
of the interaction potential [34]. On the other hand, with the
increase of dimension of the collision the on-shell scattering
intensities are redistributed over the parts of momentum space
with non-zero phonon wavevector in which the magnitude of
interaction matrix elements is reduced [34]. As a result, with
the increase of the dimensionality the total contribution to
inelastic and resonant scattering intensities diminishes.

Despite the fact that according to the presented results
the signatures of inelastic bound state resonances persist in
higher dimensions, in 3D they are considerably reduced so as
that the possibility of their experimental observation must be
additionally examined in view of the overall convergence of
RFCC calculations for a restricted phonon wavevector mesh
in the first surface Brillouin zone and the influence of other
mechanisms that may hinder or quench the appearance of
resonance effects in the scattering spectra. To investigate
whether the occurrence of resonance features in the scattering
spectra is stable against the choice of a discrete and finite
mesh of phonon wavevectors we have carried out the RFCC
calculation of the Debye–Waller factor P0 for three different
meshes with the increasing number of representative points
in the 2D surface Brillouin zone of Xe monolayer [35]. The
results of these calculations are shown in figure 11 for He
atom incident energies at which the resonance effects are most
pronounced. It is evident that the appearance of resonance
features at Ei ∼ 4 meV and ∼5.6 meV is present in all
three cases (a), (b) and (c), signifying the convergence of
the present RFCC calculations and hence their predictive
power. Once the convergence is established it is justified
to introduce smearing of the calculated resonance peaks and
dips by convoluting them with functions that may simulate
the effects of ubiquitous broadening mechanisms. The result
of the resonance smearing by a convolution with a Gaussian
of halfwidth σ = 0.04 meV that may model the overall
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0.96

0.98

1.00

0.96

0.98

1.00

0.94

0.96

0.98

1.00

(c)

(b)

(a)

6 x 6

4 x 4

P 0

8 x 8

Ei [meV]

Figure 11. Debye–Waller factor (P0) for He → Xe/Cu(111)
scattering system calculated in a 3D model as a function of the
energy Ei of a He atom at normal incidence to a cold surface. Panels
(a), (b), and (c) display the results of the calculations with 4 × 4,
6 × 6, and 8 × 8 mesh in the phonon wavevector space, respectively.
Calculated points are denoted by open circles, thin full lines are guide
to the eye. The thick full line in panel (c) denotes a convolution of
P0(Ei) with a Gaussian of halfwidth σ = 0.04 meV which accounts
for the effects brought about by the broadening mechanisms.

broadening encountered in experiments is shown in panel (c)
of figure 11. This reduces the relative magnitude of resonance
features to the range of few per cent above the surrounding
nonresonant background of P0(Ei). Analogous conclusions
pertain to other energy resolved constituents of the scattering
spectra like the phonon excitation probabilities etc.

4. Conclusions

The results presented in sections 2 and 3 indicate that the
PMBSR effects may be expected to manifest themselves in
the energy resolved scattering spectra at incident projectile
energies of the order of few phonon excitation energies. For
the here studied prototype collision system He → Xe/Cu(111)

this falls in the range Ei � 10 meV. Hence, the required
conditions for experimental observation of PMBSR effects are
low incident beam energies and high resolution measurements
of the scattered beam energies, but the clustering of the
beam atoms must be avoided in order to enable unambiguous
assignments of spectral features in the scattering spectra.
At present the standard high resolution 4He atom scattering
time-of-flight (HAS-TOF) machines operate at the border
of fulfilment of these conditions which makes the detection
of PMBSR-induced structures in these experiments rather

critical. However, the development of a novel 3He spin-echo
spectroscopy [36, 37] which combines ultrahigh resolution
with very low 3He beam energies may offer a possibility
of fulfilment of the above quoted conditions within the
experimental range of currently operational 3He spin-echo
machines.

Acknowledgments

This work was supported in part by the Ministry of Science,
Education and Sports of Republic of Croatia through the
Research Projects Nos. 035-0352828-2837 and 035-0352828-
2839.

References

[1] Stern O 1929 Naturwissenschaften 17 391
Estermann I and Stern O 1930 Z. Phys. 61 95
Estermann I, Frisch R and Stern O 1931 Z. Phys. 73 348

[2] Johnson T H 1930 Phys. Rev. 35 1299
Johnson T H 1931 Phys. Rev. 37 847

[3] Lennard-Jones J E and Devonshire A F 1936 Nature 137 1069
Lennard-Jones J E and Devonshire A F 1937 Proc. R. Soc. A

158 253
Devonshire A F 1936 Proc. R. Soc. A 156 37

[4] Hoinkes H 1980 Rev. Mod. Phys. 52 933
[5] Benedek G and Valbusa U (ed) 1982 Dynamics of Gas–Surface

Interaction (Springer Series in Chemical Physics vol 21)
(Berlin: Springer)

[6] Engel T and Rieder K H 1982 Structural Studies of Surfaces
with Atomic and Molecular Beam Diffraction (Springer
Tracts in Modern Physics vol 91) (Berlin: Springer) p 55

[7] Frankl D R 1983 Prog. Surf. Sci. 13 285
[8] Bortolani V and Levi A C 1986 Riv. Nuovo Cimento 9/11 1
[9] Hulpke E (ed) 1992 Helium Atom Scattering from Surfaces

(Springer Series in Surface Science vol 27) (Berlin:
Springer)

[10] Benedek G and Toennies J P 1994 Surf. Sci. 299 587
[11] Farı́as D and Rieder K H 1998 Rep. Prog. Phys. 61 1575
[12] Doak R B 1992 Atomic and Molecular Beam Methods vol 2,

ed G Scoles (New York: Oxford University Press)
(section 14)

[13] Gumhalter B 2001 Phys. Rep. 351 1
[14] Graham A P 2003 Surf. Sci. Rep. 49 115
[15] Cantini P 1982 Dynamics of Gas–Surface Interaction (Springer

Series in Chemical Physics vol 21) ed G Benedek and
U Valbusa (Berlin: Springer)

[16] Hoinkes H 1992 Helium Atom Scattering from Surfaces
(Springer Series in Surface Science vol 27) ed E Hulpke
(Berlin: Springer)

[17] Benedek G 1975 Phys. Rev. Lett. 35 234
Benedek G, Brusdeylins G, Doak R B, Skofronick J G and

Toennies J P 1983 Phys. Rev. B 28 2104
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59 5898

9

http://dx.doi.org/10.1007/BF01506798
http://dx.doi.org/10.1007/BF01340293
http://dx.doi.org/10.1103/PhysRev.35.1299
http://dx.doi.org/10.1103/PhysRev.37.847
http://dx.doi.org/10.1038/1371069a0
http://dx.doi.org/10.1098/rspa.1937.0018
http://dx.doi.org/10.1098/rspa.1936.0133
http://dx.doi.org/10.1103/RevModPhys.52.933
http://dx.doi.org/10.1016/0079-6816(83)90008-4
http://dx.doi.org/10.1016/0039-6028(94)90683-1
http://dx.doi.org/10.1088/0034-4885/61/12/001
http://dx.doi.org/10.1016/S0370-1573(00)00143-5
http://dx.doi.org/10.1016/S0167-5729(03)00012-8
http://dx.doi.org/10.1103/PhysRevLett.35.234
http://dx.doi.org/10.1103/PhysRevB.28.2104
http://dx.doi.org/10.1016/S0039-6028(01)01988-4
http://dx.doi.org/10.1088/0953-8984/14/24/304
http://dx.doi.org/10.1016/0039-6028(94)90388-3
http://dx.doi.org/10.1016/0039-6028(95)00265-0
http://dx.doi.org/10.1016/S0039-6028(96)01031-X
http://dx.doi.org/10.1103/PhysRevLett.80.125
http://dx.doi.org/10.1103/PhysRevB.59.5898


J. Phys.: Condens. Matter 20 (2008) 224002 A Šiber and B Gumhalter
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Gumhalter B 1991 Surf. Sci. 251/252 706
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