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We investigate the thermodynamics of complexation of functionalized charged nanospheres with viral pro-
teins. The physics of this problem is governed not only by electrostatic interaction between the proteins and the
nanosphere cores �screened by salt ions�, but also by configurational degrees of freedom of the charged protein
N tails. We approach the problem by constructing an appropriate complexation free-energy functional. On the
basis of both numerical and analytical studies of this functional we construct the phase diagram for the
assembly which contains the information on the assembled structures that appear in the thermodynamical
equilibrium, depending on the size and surface charge density of the nanosphere cores. We show that both the
nanosphere core charge and its radius determine the size of the capsid that forms around the core.
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I. INTRODUCTION

Viruses have optimized the feat of packaging genome
molecules and delivering them to the appropriate cells. In its
simplest form, a virus consists of a rigid protein shell
�capsid� that surrounds and protects the genetic material �ei-
ther RNA or DNA� from chemical and physical assaults �1�.
A viral capsid contains several copies of either one type of
protein or of a few slightly different kinds. A number of in
vitro self-assembly experiments reveal that the protein sub-
units of many RNA viruses can assemble spontaneously not
only around their own genome but also the genomes derived
from other viruses and various nonviral anionic polymers.
All these features in addition to their extraordinarily highly
symmetric shape and monodisperse size distributions make
viruses ideal structures for gene therapy, drug delivery, and
various nanotechnology and materials science applications
�2–5�. To this end, the number of experiments and theoretical
research aimed at understanding the physical basis of assem-
bly of viruses and the factors influencing the structure and
size of viral capsids is amazingly soaring �6–21�.

The majority of viral capsids have either spherical or
elongated structures. Most spherical viruses have structures
with icosahedral symmetry and contain 60T protein subunits,
where T is the structural index of viral shells and is deter-
mined from the relation T=h2+k2+kh with h and k as non-
negative integers �22�. While the capsid protein of some vi-
ruses can form only one structure with a specific size, the

capsid protein of many others is more flexible and adopts
various structures with different sizes. For example, tobacco
mosaic virus �TMV� capsid proteins assemble into tubular
structures regardless of the shape and size of their cargo �23�.
This indicates that the shape of the virus is solely dictated by
the intrinsic property of protein subunits. In the other end of
the spectrum, many experiments show that the capsid pro-
teins of cowpea cholorotic mosaic virus �CCMV�, a spherical
RNA virus, are able to form capsid of various size and
shapes �24–26�.

Over 35 years ago, Adolph and Butler �25� and more re-
cently Lavelle et al. �26� performed a series of in vitro ex-
periments with CCMV capsid proteins in the absence of
RNA and found that depending on the pH and ionic strength
several different structures assembled. A notable feature of
the constructed shape “phase” diagram based on these ex-
periments is the change from an icosahedral T=3 structure to
a cylindrical shape upon a decrease in ionic strength and an
increase in pH revealing the important role of electrostatic
interaction on the size and shape of empty viral shells.

There have been a number of different experiments and
theoretical studies �27–34� to investigate the impact on the
structure of capsids of the shape and length of genome. To
explore the effect of cargo on the morphology of viral capsid,
Mukherjee and co-workers examined the assembly of capsid
proteins of CCMV around heterogeneous DNA longer than
500 base pairs and found that tubular structures spontane-
ously formed �9�. Note that CCMV has at T=3 icosahedral
structure in its native form.

Quite remarkably, almost half a century ago, Bancroft
�see, e.g., Ref. �24�� demonstrated the important role of sto-
ichiometry ratio of capsid proteins and genome in the struc-
ture of viral shells. According to their experiments CCMV
capsid proteins could encapsidate TMV RNAs which are
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about 6000 nucleotides in viral particles of various sizes.
Depending on the ratio of RNA-protein concentrations, T
=3, 4, or 7 structures can form.

More recent experiments with polystyrene sulfonate �PSS,
a highly flexible polyelectrolyte chain� and CCMV capsid
proteins indicate the significance of length of genome in that
the diameter of CCMV viral shells encapsidating PSS varies
from 22 to 27 nm when the molecular weight of PSS varies
from 400 KDa to 3.4 MDa �11�. The impact of the size of
cargo on the diameter of capsid is quite transparent in the
experiments of Sun and co-workers in which they found that
the capsid proteins of brome mosaic virus �BMV�, another
spherical plant virus, are able to package the functionalized
gold nanospherical particles with diameters of 6, 9, and 12
nm to form viruslike particles with T=1, 2, or 3 structures,
respectively �27�.

All the aforementioned experiments focus on the impor-
tant role of size and structure of genome and stoichiometric
ratio of genome to protein in determining the structure of
viral shells. However, several experimental and theoretical
studies reveal that electrostatic interaction is the driving
force for the assembly of capsid proteins around anionic car-
gos, and thus it is crucial to study the impact of cargo charge
density on the structure of capsids. In fact, a careful study of
several single stranded RNA viruses show that there is a
linear relation between the numbers of charges on the capsid
inner surface and on their genome �32�. An important ques-
tion, then, naturally arises: could we change the size of a
capsid by changing the net charge of its cargo? More specifi-
cally, in the experiments of Sun and co-workers with nano-
spheres, does a T=3 structure form if one increases the
charge density of the 9 nm cores which normally form
“pseudo” T=2 structures?

In this paper, we investigate the interplay between the
charge density and size of nanocargos in virus assembly.
Similar to the experiments of Sun and co-workers, we con-
sider negatively charged nanospheres which interact with
positively charged capsid inner surface, under physiological
condition, and find that in addition to the diameter of the
encapsidated nanospheres, the total net charges on cargos
have a significant impact on the size of viral capsids.

An important feature of several RNA viruses, including
CCMV and BMV mentioned above, is the presence of cat-
ionic polypeptide chains that form the N termini of the
capsid protein. Rich in basic amino acids, there is a total of
thousands of charges on the N-terminal tails which extend
into the capsid interior and are responsible for the absorption
of RNA to the inner capsid surface. Very recent in vitro stud-
ies of Aniagyei et al. reveal that a mutant of CCMV coat
proteins lacking most of the N-terminal domain, N�34, as-
sembles around negatively charged 12 nm spherical cores to
form T=2 structures �34�. Note that native CCMV proteins
form a T=3 structure around 12 nm spherical cores. Our
calculations also show that the N-terminal arms can have a
major impact on the virion structure and �as shown in Figs. 3
and 4� they can significantly modify the free-energy land-
scape of viral structures. One also has to consider that the
deletion of the N-terminal tails might change the preferred
angle between the protein subunits, an effect which is not
taken into account in the present study. According to our

studies, depending on the cargo charge density and the pres-
ence of N-terminal tails it might be advantageous for capsid
proteins to form relatively smaller or bigger shells compared
to their native structures. The effect of N-terminal on the free
energy of viral capsids has been investigated previously �35�.
Here, we take another approach that enables us to study the
energetics of complexation of proteins and core in more de-
tails. Our emphasis is also on different aspects of the assem-
bly, in particular the formation of differently sized structures
depending on the conditions.

The outline of the paper is as follows. In Sec. II, we
present our model to calculate the free energy between
capsid inner surface and a rigid sphere including the interac-
tion of positively charged N-terminal tails with the spherical
cargo. In Sec. III, we present our numerical results and in
Sec. IV we discuss our findings and their implications, and
summarize our conclusion.

II. THEORETICAL DESCRIPTION OF ENERGETICS AND
THERMODYNAMICS OF THE ASSEMBLY

Here, we consider encapsidation of charged nanoparticles
�whose number is nc� within the virus capsid and the depen-
dence of the formation free energy on the parameters de-
scribing the system. We assume that the solution consists of
monovalent salt �of bulk concentration c0�, dissolved protein
monomers �or, more generally, basic protein subunits, which
may be, e.g., protein dimers as is the case for hepatitis B
virus—their number is assumed to be np�, and spherical
cores that are perfectly monodisperse with respect to radius
R1 and surface charge density �1. All the particles are dis-
solved in a medium whose dielectric constant is �0�r �we
shall take �r=80, i.e., water�. An assembly problem of this
type involves many parameters, including the concentrations
of cores �nc /V� and proteins �np /V, where V is the volume of
the solution�. These two parameters importantly influence the
assembly phase diagram, in addition to the energy of the
assembled complex, which is a fairly complicated quantity in
itself. One can expect formation of variously sized protein
capsids �described by different Caspar-Klug T numbers�
around the core, depending both on the properties of the core
and on particle concentrations �nc /V and np /V�. We shall
first, however, examine the energetics of the formed complex
�capsid+core�.

A. Energetics of the assembled complex

In general, we shall assume that the protein charge is dis-
tributed along the flexible N tails. We treat the tails as ge-
neric polyelectrolytes with intermonomer bond length a, par-
tial charge p per monomer, and nonelectrostatic excluded
volume interactions characterized by the excluded volume v.
Our approach is quite similar to that exposed in Ref. �33�.
The free energy of the complex in the subspace of fixed total
number of polyelectrolyte monomers, N, can be calculated
from

F =� f�r�d3r − ��� d3r���r��2 − N� , �1�

where � is the Lagrange multiplier enforcing the condition
of fixed number of monomers, and
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The free energy is a functional of the monomer density field
of the polyelectrolyte chains ��2�r�� and the mean electro-
static potential ���r��. The complex free energy also de-
pends on the salt concentration fields �c��r�� whose chemical
potentials are denoted by ��. One can assume that in addi-
tion to the charge located on mobile protein tails, there is
also a static density of charge, �p�r�, which could in principle
be located on the immobile parts of the capsid proteins �out-
side tails�. In the further calculations, we shall neglect the
fixed charge on the capsid and assume that the static charge
in the system resides exclusively on the core surface, so that

�p�r� = �1	�r − R1� , �3�

where �1 is the charge density at the core surface. The con-
tribution of such localized charges to the electrostatic part of
the free energy can be easily separated �if required� from the
functional in the form of the boundary term as it was done in
Ref. �19�. See Fig. 1 for the illustration of the system that we
consider and the relevant parameters characterizing it.

The variation of the free-energy functional with respect to
fields �, �, and c� yields two coupled partial differential
equations. The first one is the generalized polyelectrolyte
Poisson-Boltzmann �PB� equation,

�0��2��r� = 2ec0 sinh�
e��r�� − ep��r�2 + �p�r� . �4�

The second equation is the Edwards equation,

a2

6
�2��r� = v��r�3 + pe
��r���r� − ���r� . �5�

The Lagrange multiplier ��� enforces the conservation of the
total number of polyelectrolyte monomers,

� d3r�2�r� = NpNt = N , �6�

where Nt is the number of monomers in a particular tail and
Np is the number of proteins �or, in general, protein subunits�
in the complex. The electrostatic boundary conditions are the
same as in the standard PB theory. In particular, there is a
boundary condition at r=R1, reflecting the finite charge den-
sity �1 at the surface of the core. There are two additional
conditions that need to be specified for the density field ��r�.
We take the core to be impenetrable and thus presume that

��R1� = 0. �7�

Since we are dealing with the continuous variant of the
model, this boundary condition means that exactly on the
core surface, the density of the monomers is zero. Depending
on the conditions, however, the density of the monomers
quite close to the core surface may be appreciable. Exactly
how close to the surface will depend on many parameters,
with an important one being the distance between the capsid
and the core, i.e., �R2−R1� /a ratio.

On the inner part of the capsid one could assume that

��R2� =� Np

4�aR2
2 , �8�

which means that there must be some density of the tails at
the capsid wall since they are fixed or grafted. This is the
only way that grafting enters our calculation. In our repre-
sentation, this condition means that the polyelectrolyte an-
chors to the capsid perpendicularly �see Fig. 1�. The bound-
ary conditions should be interpreted carefully due to the
continuum nature of the theory that we use, so we once again
emphasize the meaning of the boundary conditions in the
context of the representation that we have chosen. The
boundary conditions specify the values of the polyelectrolyte
density field right at the core and inner capsid surfaces.
However, the density field ��2�r�� in immediate vicinity of
these points may be significantly larger, showing the accu-
mulation of monomers close to the surfaces. So, although
condition �8� may be interpreted in the discrete variant of the
model as if there is a single grafted monomer in a spherical
shell of thickness a touching the capsid from the inside, in
the continuum variant of the model and depending on the
conditions, there may in fact be many monomers in the
spherical shell of thickness a, although condition �8� still
holds. That is why, in the continuum variant of the model, we
just say that the condition �8� means that the polyelectrolyte
anchors perpendicularly to the inner capsid surface. The
problem as we have posed it is well defined for arbitrary
separations between the core and the capsid. Note, however,
that in order to fit the whole polyelectrolyte in that space,
i.e., that the normalization condition in Eq. �6� is satisfied,
�2�r� may have large values of the derivatives due to the

FIG. 1. �Color online� Illustration of the portion of the spherical
complex of proteins with flexible tails and a charged core. The
parameters discussed in the text are indicated. The configuration of
the tails corresponds to the case when the core is poorly charged.
For the sake of a clear insight, the illustration shows a discretized
model of the polyelectrolyte, although our theory is based on the
continuous polyelectrolyte representation �see text�.
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boundary conditions in Eqs. �7� and �8�. This also signifies a
thermodynamically unfavorable contribution of the entropy
of such polyelectrolyte configurations �33�, which is given
by kBTa2����r��2 /6. This term is in fact the only remnant of
the discretized representation of the polyelectrolyte, contain-
ing explicitly the monomer size. Although there are no am-
biguities and problems with our theory in the regime R2
−R1�a, there obviously may be some problems in interpre-
tation of the boundary conditions in the discretized represen-
tation of the polyelectrolyte. None of the conclusions that we
shall present depend on the behavior of our model in this
regime. The problems of discretized vs continuum represen-
tations of the polyelectrolytes have been previously exten-
sively discussed in the literature, and we point the reader to
Refs. �36,37� that discuss the aspects of the continuum poly-
electrolyte representation relevant for the situation of interest
to us.

The procedure presented thus far is based on the mean-
field description of the electrostatics of the problem and
ground-state dominance ansatz for the polyelectrolyte field
�see Ref. �33� for details�. Furthermore, the finite extensibil-
ity of the polyelectrolyte is not taken into account. While that
was of no essential importance for the problem studied in
Ref. �33�, it may become of importance in our case since the
protein tails are assumed to be grafted to the capsid. To take
the geometrical constraints regarding the polyelectrolyte
density field into account, we shall now derive an alternative
set of equations that we will obtain from a constrained varia-
tion of a free-energy functional. Instead of varying Fcomplex
over the space of all functions ��r�, we shall vary it over the
constrained set of functions, i.e., polyelectrolyte amplitudes
that can be represented as

��r� = �s�r� + u2�r� , �9�

where u�r� is a real function and

�s
2�r� =

Np

4�ar2 . �10�

The above equation describes the maximally extended poly-
electrolyte density, so that no smaller values of ��r� are
possible without enlarging the monomer-monomer separa-
tion distances a �stretching�. Varying Fcomplex over u�r�, we
obtain the new set of Euler-Lagrange differential equations
for ��r� and u�r� as

�0��2��r� = 2ec0 sinh�
e��r�� − ep��s�r� + u2�r��2 + �p�r� ,

�11�

a2

6
L�s

�u�r�� = s�r� , �12�

where L�s
�u� is a differential operator given as

L�s
�u� = �u � �s + 2�u2�2u + 2u��u�2� . �13�

We have used here �2�s=0. The function s�r� is given as

s�r� = v��s
3u + 3�s

2u3 + 3�su
5 + u7� + 
e���su + u3�

− 2u���s + u2� . �14�

We still have to specify the boundary conditions. Looking at
Eq. �9�, one sees that we can no longer put ��R1�=0, so we
will be necessarily stuck with finite density of monomers at
the core radius. We choose

u�R1� = 	, u�R2� = 	, 	 → 0 �15�

as the appropriate boundary conditions implying that the N
tails are normal to the surface of the inner core as well as
outer capsid wall at R1 and R2. In other words we assume
that the chains have no overhangs at R1 and R2, so that they
touch both the core and the capsid only once and perpendicu-
larly. Note that Eq. �8� is automatically satisfied with such a
choice.

The complex free energy that we have constructed thus
far accounts approximately for electrostatic energy of the
system, the entropic and excluded volume effects of the con-
fined polyelectrolyte �protein tails�, and for entropic contri-
butions of the salt ions �on the mean-field level�. It does not
contain, however, the attractive component �nonelectrostatic�
of protein-protein interactions. These interactions consist of
hydrophobic and van der Waals �vdW� contributions �38�
and we denote their value per protein in the complex as

f̄ p,hydro. It is this part of the energy that keeps the dominantly
positively charged empty capsids together �19,39�.

B. Thermodynamics of the assembly

The parameter space for assembly that we are interested
in needs to be at least four dimensional �R1, �1, nc /V, and
np /V�, presuming that the properties of the capsid proteins
are kept fixed. Analysis of assembly in such a high-
dimensional parameter space would be highly involved
�29,40�. It is of interest thus to try to extract the relevant
information on the assembly solely from the complex free
energy, as we have defined it. Such a procedure cannot be
expected to be valid for all values of nc and np, but it should
be of use when

nc �
np

Np�Tmax�
, �16�

where Tmax is the maximal capsid T number that can be
possibly assembled in the experimental circumstances and
Np�Tmax� is the number of proteins �subunits� in a Caspar-
Klug structure of that T number. Basically, Eq. �16� says that,
concerning the “final” �assembled� state, there is no big dif-
ference with respect to the T number of the dominantly as-
sembled structures. The final state will always consist of all
cores complexed with certain number of proteins, and the
rest will be more or less the same number of proteins that
may remain isolated in the solution or perhaps form empty
capsids. There will be no free �uncomplexed� cores in the
assembled state.

Let us assume that prior to the assembly, the solution
contains isolated charged cores and individual viral proteins
�or protein dimers or whatever the basic subunit of the as-
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sembly might be�—this is the “initial” state. In the initial
state, the free energy of the system is

Fi = npf̄p
i + ncFcore

i , �17�

where f̄ p
i and Fcore

i are the free energies per isolated protein
and core in the initial state, respectively. These may in prin-
ciple contain also the translational entropy contributions. Af-
ter the assembly, the free energy is �final state�

Ff = ncFcomplex + ncNpf̄p,hydro + �np − ncNp� f̄ p
f . �18�

The first term on the right-hand side �RHS� of Eq. �18� is
what we can calculate—this is the free energy of the com-
plex �note, however, that we do not calculate the entropic
term regarding the translational freedom of the assembled
structures�. The number of complexes is exactly nc since we
assumed that all cores are complexed with the proteins. The
second term on the RHS of Eq. �18� is the part of the attrac-
tive energy of proteins assembled in the complexes that is
difficult to calculate. It contains the hydrophobic and van der
Waals protein-protein interactions, and per protein the corre-

sponding free energy is f̄ p,hydro. The third term on the RHS of
Eq. �18� is the free energy of the proteins in the final state,
which are not assembled in the complexes with cores �np
−ncNp of them�. They may, however, be assembled in empty
capsids. Thus, in general, free energy per such protein in the

final state � f̄ p
f � is not the same as the free energy per isolated

individual protein in the initial state � f̄ p
i �. If the proteins that

do not complex with the cores indeed form aggregates �e.g.,

empty capsids� then one can expect that f̄ p
f 
 f̄ p

i .
The system will proceed from state i to state f if Ff 
Fi.

We want to examine the quantity Ff for complexes that have
different T numbers, i.e., we want to find Ff for several dif-
ferent final states f . For all of these states, the initial assem-
bly state is the same, so for two different final states f1 and f2
we can directly compare the corresponding free energies Ff1
and Ff2

and if Ff1

Ff2

we can say that state f1 is more likely
to be realized in the thermodynamical equilibrium. Thus, one
should explore the quantity

Ff − Fi = nc�Fcomplex − Fcore
i � + ncNp� f̄ p,hydro − f̄ p

f �

+ np� f̄ p
f − f̄ p

i � . �19�

Note, however, that the last term proportional to np does not
depend on the structure of the assembled complex, so for our
purposes it is of no importance as we want to examine the
assembly free energies for different Np’s.

Upon assuming that

�Fcomplex� � Np� f̄ p,hydro − f̄ p
f � , �20�

we can examine Fcomplex for different complexes and com-
pare them mutually �for given initial state, i.e., charge den-
sity and radius of the cores� so to judge about the thermody-
namically preferred states. In order to be able to construct a
phase diagram, i.e., to compare the free energies for different
initial states, we shall construct the quantity

�F � Fcomplex − Fcore
i . �21�

This quantity should contain the biggest part of the assembly
free energy, assuming Eq. �20� holds. Note, however, that the
interpretation of �F as the assembly free energy is approxi-
mate and of limited validity. As long as the chemical poten-
tial of the free proteins is equal to the nonelectrostatic part of
protein-protein interaction, our assumption is valid, but it can
be most easily justified by assuming that the assembly of
empty shells in solution can take place in the absence of the
cores, which is the situation often observed in experiments.
In that case, the attractive protein-protein interactions are
likely to be similar in the empty capsids �present in the final
state of the system� and those that contain the core, so that

f̄ p,hydro− f̄ p
f �0, and condition �20� is automatically satisfied.

In the following, we shall term �F as the assembly free
energy, and we shall refer to Fcomplex �also denoted as F� as
the complex free energy or the free energy of the complex.

III. NUMERICAL EVALUATION OF THE MODEL

A. Tail-less protein subunits

As already discussed, a prominent feature of the virus
proteins assembled in a capsid is the N tails that protrude into
the capsid interior. This feature is typical for many viruses
and can influence both the energetics of the protein-genome
assembly �33� and its speed. The tails are typically very posi-
tively charged, and they are thus expected to play a promi-
nent role in the assembly of proteins with negatively charged
cores. The possibility of spatial redistribution of the tails is
also expected to influence the assembly, so that one can ex-
pect an interplay between the electrostatics of the tails and
their configurational entropy. All of these effects are included
in our free-energy functional, at least approximately. In this
section, we shall emphasize the electrostatic aspect of the
capsid proteins and effectively neglect the tail positional de-
grees of freedom. The problem then reduces to electrostatic
interactions only since the entropy of the N tails is quenched.
Omitting the hydrophobic, vdW, etc. energies of the capsid
proteins, one is left with a purely electrostatic part of the
total free energy.

As a first approximation one can smear the charge of the
Np proteins uniformly over the external sphere of radius R2,
so that its surface charge density is �2. The problem as de-
scribed by this model system is still not completely trivial as
the PB equation describing it is of course nonlinear �19�.
However, some insight can be obtained by linearizing the PB
equation and solving it in this approximation �Debye-Hückel
�DH��. The details are elaborated in the Appendix and the
final result for the electrostatic free energy is Eq. �A9�. One
can further simplify it by using �R1�1, which is a condition
typically met for the experiments done on viruses at physi-
ological salt concentrations ��100 mM� �19,39�. In this
case,

lim
�R1�1

Fcomplex =
�

�0�r�
�2R1

2�1
2 + 4R1R2�1�2e��R1−R2�

+ R2
2�2

2e2��R1−R2� +�R2
2�2

2
 .
 �22�

One should note here that the salt resides only in compart-
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ments III and II �see Fig. 1�, so there is no symmetry in the
formula regarding �1, �2 and R1, R2. The first term in Eq.
�22� is the electrostatic self-energy of the core, and the third
term is the self-energy of the protein shell. Note that the
self-energy of the core has a prefactor of 2 with respect to the
analogous term for the protein shell. This is due to the fact
that the shell is screened by the salt both from the inside and
the outside, which is not the case for the impenetrable core
�note also that the dielectric constant of the core does not
figure in the final equations�.

The second term in Eq. �22� is the electrostatic interaction
free energy between the core and the protein shell. One eas-
ily sees that it will be minimized when �1 and �2 have dif-
ferent signs. We see that it decreases quickly as the distance
between the shell and the core increases, i.e., it decreases as
exp�−��R2−R1��.

Although the DH solution enables us to study the energet-
ics of the assembly in more details, at least numerically one
needs to check its validity vs the complete nonlinear
Poisson-Boltzmann theory �see Ref. �19��. By comparing it
to the exact solution of the Poisson-Boltzmann equation one
simultaneously checks the numerical results and the analyti-
cal formula for the DH solution. This comparison is shown
in Fig. 2.

We have chosen the capsid parameters to approximately
represent the T=3 capsid of the BMV with capsid radius
R2=16 nm. The surface charge density of the capsid �2=
−0.504e /nm2 was obtained by smearing the 18 charges per
each of the Np=90 dimeric tails over the capsid surface. Note
that the absolute signs of the charge do not matter; what is
important is that the charge on the core is of the opposite
sign from the charge on the capsid. The core radius R1
=15.125 nm was chosen to be in the regime when the attrac-
tive interaction is not completely screened by salt—one can
see this effect as a minimum in the free energy for some core
charge density �1. This minimum disappears when the dis-
tance between the core and the capsid is larger than �1 /�. In
the chosen case, the minimum is at �1�0.3e /nm2.

As in the case studied in Ref. �19�, the DH results always
produce larger free energies than the exact Poisson-

Boltzmann calculation. They are of course better when the
potentials in the solution are small enough, so that the lin-
earization approximation holds—this is the case for not too
large surface charge densities, and it can be clearly seen that
the DH approximation fails worse as �1 �or �2� increases,
again in complete agreement with the results of Ref. �19�.

Having established some confidence in the DH results, we
can scrutinize them a bit more closely. If one takes R1=R2
and �1=−�2 in Eq. �22�, one obtains the absolute minimum
of the complex free energy in the whole R1, R2, �1, and �2
space. At that point in the parameter space the free energy is
exactly zero, which is the absolute minimum. This is due to
the fact that the core charge exactly neutralizes the protein
charge yielding effectively the uncharged shell ��=�1+�2
=0� of radius R=R1=R2.

We now insert Eq. �22� in Eq. �21� and find

�F =
�

�0�r�
�4R1R2�1�2e��R1−R2� + R2

2�2
2e2��R1−R2� + R2

2�2
2
 .

�23�

Examining the assembly free energies �Eq. �21�� of the vari-
ously sized �R1� and charged ��1� cores with the proteins
assembled in capsids of three different T numbers, we obtain
the exact results for the proteins with no tails shown in Fig.
3. These were obtained by solving full PB equation, without
linearizing it. We see that the phase diagram in this case is
totally “flat”—the smallest possible T-number structure will
always be the one with smallest complex energy, irrespec-
tively of the core charge and its radius �at least in the range
of values considered here, and the conditions summarized in
Sec. II B�. Thus, the phase diagram is governed solely by
simple geometry. The same result comes out also in the DH
approximation. Note also how the assembly free energy
shows practically no dependence on �1 and R1 when R2
−R1�1 /�. This is due to the fact that in this regime, the

FIG. 2. �Color online� Comparison of the numerically exact re-
sults with the analytical DH expression �A9� for the free energy of
the capsid with the charged core �complex free energy�. The free
energy per protein subunit is plotted as a function of the core sur-
face charge density �1. The parameters of the calculation are de-
noted in the figure.
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FIG. 3. �Color online� Numerically exact results for the assem-
bly free energy �Eq. �21�� assuming tail-less protein subunits �c0

=100 mM�. The free energies were plotted for capsids with three
different T numbers as functions of the core surface charge density
�1 and radius R1. The number of subunits and corresponding capsid
radii are Np=30 �T=1�, 60 �T= “2”�, and 90 �T=3�, and R2=9.24
�T=1�, 13.06 �T= “2”�, and 16 �T=3� nm.
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assembly free energy is simply the �positive� electrostatic
self-energy of the capsid which depends only on R2, i.e., the
T number of the capsid �see also Eq. �23� for the Debye-
Hückel description of this situation�. When R2−R1�1 /�
�i.e., about 1 nm in our case, c0=100 mM�, the electrostatic
attraction between the core and the capsid becomes only par-
tially screened by salt ions, and the free energy of the assem-
bly, �F, becomes negative suggesting that the assembly is
thermodynamically preferable, releasing extra energy in the
solution. The assembly is also more efficient for larger core
charge densities.

We still need to consider what happens in the case when
the protein charges are delocalized on the flexible polyelec-
trolyte tails. In particular, the decrease in the volume of the
space between the core and the capsid when R1→R2 would
importantly confine the polyelectrolyte tails. We can thus ex-
pect their entropic and self-interaction contributions to be-
come of the largest importance in the region where the as-
sembly free energy of the tail-less monomers shows the most
negative values.

B. Protein subunits with N tails

We now assume that the protein charge is distributed
along the flexible N tails, i.e., we take all the details of the
model developed in Sec. II into account. First, we calculate
the free energies of the complex without the account of the
finite extensibility of the tails, i.e., we solve Eqs. �4� and �5�
with boundary conditions for the polyelectrolyte amplitude
as specified in Eqs. �7� and �8�. From the thus obtained free
energy, we subtract the electrostatic self-energy of the core.
The ensuing assembly free energies are shown in Fig. 4.

We see that although the assembly free energies are of the
same order of magnitude as in the case of tail-less capsom-
eres, the shape of the free-energy landscape is quite different
and the assembly is now governed both by the core charge
and by its radius. This is most easily seen by the complicated
shape of the regions denoted by T=1, T= “2”, and T=3 in
the �1-R1 plane in Fig. 4, which correspond to capsids with

the lowest free energy. We also see that when the two radii
are close to each other, the free energy steeply rises. This is
easy to understand since in this case, the tails are forced to
redistribute in a small volume in between the capsid and the
core, so the contribution of entropic confinement to the free
energy becomes significant. Interestingly, in the case of an
infinitely thin capsid studied in the previous section, it was in
these regions that the assembly free energy sharply dropped,
exactly the opposite from the case we have here. It is thus
clear at this point that the tails do introduce different physics
into the problem. The assembly free energy in general also
decreases with �1, which is an effect that we saw in the
previous section and is due solely to electrostatics. We also
observe that the values of the free energy are mostly smaller
from the ones obtained in the model of an infinitely thin
charged capsid, which essentially means that the tails can
adopt such conformations that reduce the electrostatic part of
the free energy to a significant extent, especially in the elec-
trostatically unfavorable regime. Note also how the structure
with the lowest assembly free energy increases its radius
�and total charge� as the core charge increases �e.g., for R
=8.25 nm one can see the progression from T=1 and T=2 to
T=3 structures as �1 increases�. This can be simply ex-
plained by the screening of the core by the capsomer tails—
the more charged the core, the more capsomeres �i.e., larger
T numbers� are needed to screen it efficiently. But note here
that the tails are assumed to be maximally flexible and can
thus easily stretch from practically arbitrary distances
�capsid� to the core in order to screen it. For a given core
radius R1, the assembly free energy is positive when �1=0,
and it decreases as �1 increases, becoming negative for some
“critical” core charge density, whose typical values in the
range of parameters considered are �1�e /nm2. Thus, in or-
der for the assembly to proceed spontaneously, the cores
need to be sufficiently charged.

To see whether the results are influenced by the maximal
extensibility of the tails, in Fig. 5 we plot the assembly free
energy using the maximal extensibility ansatz in Eq. �10�
together with boundary conditions in Eq. �15�. Again, the
assembly free energies are of the same order of magnitude,
but the borders between the different regions in the �1-R1
plane are quite different with respect to those obtained with-
out the maximal extensibility ansatz. In order to better un-
derstand the results obtained thus far, it helps to plot the
spatial distribution of the protein monomers, i.e., �2�r�,
within the space between the core and the inner capsid ra-
dius. A solution for the case when Np=90 �1620 monomers
in total�, R2=16 nm �T=3�, R1=9.875 nm, and �1
=0.5e /nm2 is shown in Fig. 6.

What Fig. 6 nicely illustrates is that the tails stretch out
from the capsid surface toward the core, so that they accu-
mulate around the oppositely charged core. There are still
some monomers in the space between the core and the
capsid, but the dominant density is situated in a shell around
the core. One can also see how the constrained solution stays
above the maximal extensibility limit in Eq. �10�. One should
keep in mind that the boundary conditions for the two solu-
tions are different, so one cannot expect that the constrained
variation will always yield larger energy. This is also the case
for the displayed calculation where we find F=927kBT, and
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FIG. 4. �Color online� Assembly free energies calculated as
functions of the core radius R1, its charge �1, and for three different
capsid radii R2 �and Np�, as quantified by three different T numbers.
The parameters of this calculation are a=0.5 nm, p=1, v
=0.5 nm3, c0=100 mM, and Nt=18.
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F=788kBT for the unconstrained and constrained values of
the complex free energy, respectively. Note how the con-
strained polyelectrolyte density in fact approaches closer to
the charged core than the unconstrained density due to the
different boundary conditions that the two satisfy. The noted
effect results in the lowering of the free energy in the con-
strained case. However, this is not always the case, and it
depends on the distance between the core and the capsid
�R2−R1�. When this distance is sufficiently large, the tails
cannot accumulate around the core even when they maxi-
mally stretch, so that they cannot screen the core efficiently.
This effect is not present in the calculation with the uncon-
strained polyelectrolyte amplitude. This is in fact the most
important reason for the different look of boundaries in the
�1-R1 plane for the two calculations. Note how in the uncon-

strained case the complex of core with T=3 capsid has the
lowest energy for sufficiently large �1 ��1�1.5e /nm2� in a
huge range of radii R1 �8–16 nm; see Fig. 4�. However, the
maximal length of the �fully stretched� tails is Nta=9 nm, so
that for R1=8 nm tails are very much extended and only a
small part of the polyelectrolyte density can gather around
the core. As the unconstrained results do not account for this
effect, by breaking the maximal extensibility limit in Eq.
�10� the polyelectrolyte density screens the core efficiently
and thus lowers the free energy of the T=3 structure with
respect to the value obtained in the constrained calculation.
This effect is illustrated in Fig. 7 for T=3 �R2
=16 nm, Np=90�, R1=8 nm, and �1=1.5e /nm2. Note how
the maximal extensibility limit is severely broken in the un-
constrained calculation. The free energies of the complexes
are F=2710kBT, and F=3520kBT in the unconstrained and
constrained calculations, respectively, demonstrating the ef-
fect discussed.

It is of interest to examine the efficiency of core screening
by the polyelectrolyte tails somewhat closer. We define the
ratio

� =

�
R1

R1+a

d3r�2�r�

NtNp
, �24�

which can be interpreted as a percentage of monomers in a
shell of thickness a �monomer-monomer separation� around
the core. This can also be thought of as the percentage of
monomers that cover �or are “in contact with”� the core. In
Fig. 8 we display the coverage � as a function of �1 and R1
for T=3 capsid �R2=16 nm�.

What can be easily seen from this plot is the gradual shift
of the polyelectrolyte density from the space close to capsid
to the shell surrounding the core as the core charge density
��1� increases. Due to the maximal extensibility constraint
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FIG. 5. �Color online� Assembly free energies as functions of
the core radius R1, its charge �1, and for three different capsid radii
R2 �and Np�, as quantified by three different T numbers. The maxi-
mal extensibility ansatz was used to obtain these results. The pa-
rameters of this calculation are a=0.5 nm, p=1, v=0.5 nm3, c0

=100 mM, and Nt=18.
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that was included in these calculations, � parameter satu-
rates at a value smaller than 1 as �1 increases. This simply
reflects the fact that the polyelectrolyte must pass through the
region between the core and the capsid in order to accumu-
late around the core, and so much of its density may remain
in the space in between the capsid and the core. This effect
becomes more important when �R2−R1� becomes compa-
rable to the tail length Nta. The charge density of the core at
which one observes the significant accumulation of the
monomers around the core ��1�0.5e /nm2� is the same as
the charge density at which the assembly free energy be-
comes negative, i.e., the assembly proceeds spontaneously.

IV. CONCLUSIONS

An intriguing feature of our results is that both the core
charge and its radius determine the size of the capsid around
the core. A particularly interesting case is when the core
radius is close �but somewhat smaller� to the T=1 capsid,
i.e., R1=8 nm. For sufficiently small core surface charge
density ��1
0.5e /nm2�, T=1 structures around the cores
shall form. However, if the surface charge density increases
over some critical value �around 1.0e /nm2 in the constrained
model of the polyelectrolyte�, T= “2” capsids shall form, in
spite of the fact that the core radius is more than 5 nm
smaller from the radius of T= “2” capsid �see Fig. 5�. This
clearly shows that in addition to core radius, which domi-
nantly influences the assembly process, one needs to have an
adequate charge density in order to produce the structures of
desired T number. The same effect is present on the T
= “2” and T=3 borders when R1�11.6 nm. We show this
transition region in another way in Fig. 9, showing the dif-
ference in the complex free energy of T=2 and T=3 struc-
tures. Note that although the free-energy curves indeed cross
for certain values of �1 and R1, their magnitudes remain
similar even deeply in the transition region. Thus, one could
expect to observe a polydisperse distribution of T= “2” and
T=3 structures in a solution with a monodisperse distribution
of core size and charge density.

An interesting effect is observed for R1=12.08 nm in Fig.
9 where there exist two intersections between the free-energy
curves for T= “2” and T=3 complexes as �1 increases. If the
charge density is lower than 0.3e /nm2, T=3 structures have
the lowest assembly free energy. Quite surprisingly, upon
increasing the charge density, T=2 structures become the
dominant ones, i.e., the size of thermodynamically preferred
capsids decreases. This is mainly due to the fact that with
increasing the charge density, the monomers in the
N-terminal tails prefer to sit next to the core, i.e., the elec-
trostatic interaction wins over the chain configurational en-
tropy. However, as we increase the core charge density be-
yond 0.7e /nm2, it becomes more advantageous to have T
=3 structures again as there will be more charges associated
with the N tails of T=3 structures.

An even more intriguing situation is illustrated in Fig. 9
for R1=11.7 nm cores. Here, we observe three transition
lines instead of two of the previous case. Somewhat counter-
intuitively, for the charge densities above 1.5e /nm2, T= “2”
particles become free-energy minima structures again. This
indicates that under physiological conditions, if we increase
the charges on the cores significantly, the lowest possible T
structures �T=2 in this case� form, so that more charges on
the N tails can sit in the immediate vicinity of the core. This
is due to the maximal extensibility constraint, and the effect
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is not present in the calculation with the tails that do not
satisfy the constraint �see Fig. 4�. It is obvious from the
previous discussion that the finite extensibility of the tails is
important for determination of the lowest-energy structures.
One can see this most easily by comparing Figs. 4 and 5.
This effect becomes particularly important for structures in
which the core is significantly smaller than the capsid, i.e.,
when �R2−R1� / �Nta��1.

We have repeated our calculations at lower salt concen-
trations. The results are presented in Fig. 10. As it is shown
in the figure, the overall look of the region boundaries is not
dramatically changed.

In summary, we have demonstrated that the thermody-
namics of the assembly nontrivially depends on the electro-
static and geometric constraints which include ��R1−R2�
�electrostatic screening�, maximal possible stretching �R2
−R1� / �Nta��1, and confinement �R2−R1� /a
1 of the pro-
tein tails. Our study provides quantitative guidelines for ex-
periments aiming to assemble “hybrid” structures, i.e., pro-
tein shells around charged and impenetrable cores, especially
in the limit when the number of cores is much smaller than
the number of proteins.
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APPENDIX: DERIVATION OF DEBYE-HÜCKEL
FORMULAS

We solve the linearized Poisson-Boltzmann equation for
the system with tail-less capsomeres. The electrostatic poten-
tial can be written in region I �see Fig. 1� as

�I�r� = C , �A1�

in region II as

�II�r� = A
exp�− �r�

r
+ B

exp��r�
r

, �A2�

and in region III as

�III�r� = D
exp�− �r�

r
, �A3�

where � is the Debye-Hückel screening length and A, B, C,
and D are unknown constants that are to be determined from
the two boundary conditions at R1 and two at R2. This yields

A =
e��R1−R2��2�R1

2�1e�R2 + ��R1 − 1�R2�2e�R1�
2�0�r��1 + �R1�

, �A4�

B =
R2�2e−�R2

2�0�r�
, �A5�

C =
R1�1 + R2�2e��R1−R2�

�0�r�1 + �R1�
, �A6�

D =
e−�R2

2�0�r��1 + �R1�
�2�R1

2�1e��R1+R2� + ��R1 − 1�R2�2e2�R1

+ �1 + �R1�R2�2e2�R2� . �A7�

The electrostatic free energy can be written as

F =� d3r
Q�r���r�

2
, �A8�

which yields

F =
�e−2�R2

�0�r��1 + �R1�
�4�R1

2R2�1�2e��R1+R2�

+ ��R1 − 1�R2
2�2

2e2�R1

+ �2�R1
3�1

2 + �1 + �R1�R2
2�2

2�e2�R2
 . �A9�
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