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Chapter 1

Introduction

A thousand miles journey,
starts with a single step

Lao Tse
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2 CHAPTER 1. INTRODUCTION

In this thesis we study the scattering of inert, thermal energy atoms
from vibrations of semi infinite crystals. Scattering of inert atoms (es-
pecially helium) from surfaces has developed over the past 15 years '
into an indispensable technique for the studies of surface dynamics, i.e.
phonons. However, the theory needed for detailed interpretation of the
experiments has not been developed to a satisfactory extent, particu-
larly for experiments performed in the multiphonon scattering regime.
The aim of this work is to contribute to the understanding of micro-
scopic processes involved in inelastic scattering of thermal energy inert
atoms from surfaces.

The presentation of the subject follows the outline given below.

Basic notions in the theoretical descriptions of atom-surface colli-
sions are explained in Chapter 2. A short survey of the theoretical
approaches is given in terms of the basic principles which are further
illustrated within a simplified, one dimensional model description of
the problem. Several standard approaches used in the field of atom-
surface scattering (forced oscillator model - trajectory approximation
and Langevin equation approach) are explained using a simple, one
dimensional model of the problem.

The potentials governing both the static and dynamic components
of the interaction of atoms with surfaces are explained in Chapter 3.
Model potentials employed in the calculations are discussed.

Normal vibrational modes typical of infinite and semi-infinite crys-
tals are discussed in Chapter 4. A general approach to the system of N
mutually interacting bodies is presented first. The lattice dynamics ap-
proach to the problem of finding the normal modes (phonons) is briefly
outlined. The notation and nomenclature typical of the so-called ”slab
calculations” is introduced. Quantization of normal modes is presented
in the last section of this chapter.

Typical scattering experiments, including the description of exper-
imental equipment used, are further explained in Chapter 5. Basic
principles of the time-of-flight (TOF) technique are explained. A rela-
tively detailed account of the various experimental parameters is given.
The detection of scattered projectile atoms is briefly discussed. The
geometrical dimensions of experimental apparatus, typical ranges of
experimental scattering parameters and the physics underlying the de-
tection of scattered atoms turn out to be of essential importance for
comparison of the calculated and measured spectra.

First order perturbation theory approach as applied to the problem

1For very readable, popular text on this subject see [1].
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of atom-surface scattering is outlined in Chapter 6. This approximation
falls into the class known as the Distorted Wave Born Approximation
(DWBA). A rather detailed derivation of the DWBA for the case of
uncorrugated surface is given. Some comments on the appropriateness
of the use of DWBA for comparison with experiments are given in the
last section of this chapter.

Nonperturbative approach which treats the projectile dynamics clas-
sically, but still uses Schrodinger equation for the description of target
phonons is sketched in Chapter 7. This class of approximations is known
as the forced oscillator model or the trajectory approximation.

A derivation of a more complete and powerful approximation to
treat the scattering problem, which approximately includes contribu-
tions to all orders in the perturbation expansion, is presented in Chap-
ter 8. This approximation has become known as the Exponentiated
Born Approximation (EBA). Some additional comments on the valid-
ity of EBA are presented in the last section of this chapter. The thus
developed EBA has been adopted as a basic theoretical tool for all
calculations presented in this work.

A basic description of the scattering systems studied, concerning
their vibrational and interaction properties (Chapters 4 and 3) is given
at the beginning of Chapter 9. Furthermore, comparison of experimen-
tal results with the results obtained within the EBA is presented for
the representative scattering systems.

Some drawbacks and limitations of the calculations in their present
form and possible perspectives for improvements are shortly summa-
rized in Chapter 10.

A short summary of the work presented in this thesis is given in
Chapter 11.

Notations and conventions specific to the surface and solid state
physics (such as the labeling of crystal planes and directions in the
Brilluoin zone, types of crystal structures etc.) have been chosen to
agree with references [2, 3] wherever possible.
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Chapter 2

Basic concepts in
atom-surface scattering

Lack of skill dictates the economy of style.

Joey Ramone
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6 CHAPTER 2. BASIC CONCEPTS...

The title of this thesis contains the expression ”inert atoms”. This
simply means that in the process of scattering of inert atoms from
surfaces we can safely disregard all the processes in which a transfer
or strong rearrangement of charge leading to chemical bonding may
occur'. These processes require much more energy than available in
the course of collision since the oscillations of the target are charac-
terized by energies of the order of 10 meV and the atoms scattered
from surfaces are expected to have the energies of the same order of
magnitude (experiments typically operate in the range of 5-120 meV of
incident projectile energy - these energies are commonly called ” thermal
energies” ).

The basic physics of thermal energy atom-surface scattering can be
explained in simple terms even to an undergraduate reader 2. The atom
used as a projectile has a specific charge distribution, namely the nu-
cleus and the electronic ”cloud”. The target sample also has a specific
charge distribution. Thus, the surfaces of simple metals have a charac-
teristic ”jellium-like” type of charge distribution where the nearly free
electrons ”spill out” across the jellium edge 3 with their density expo-
nentially decaying into the vacuum [2]. On the other hand, the charge
distribution at crystal surfaces made up of condensed noble gas atoms
is expected to be realistically described by a superposition of atomic
charge distributions, since one does not expect that the charge delocal-
ization phenomena would be important in this case. Here, the charge
distribution is expected to be inhomogeneous, reflecting the crystalline,
geometrical arrangement of the noble gas atoms.

Upon approaching the surface, the inert projectile atom whose scat-
tering is studied will experience effective repulsive potential at distances
at which the two charge distributions overlap. This distance is typically
of the order 2-3 A*. That is why the inert projectile atoms of thermal

'Recent results point to certain amount of hybridization of the inert atom orbitals
with the target orbitals [4].

2Tt is not an intention of this chapter to give a detailed overview of the various
theoretical approaches to the problem of atom-surface scattering. An extremely
limited point of view is taken here in order to explain the nature of the problem in
simple and clear terms. More detailed accounts of the various theoretical approaches
can be found in [5, 6].

3Jellium edge is located a/2 above the centers of the topmost atom crystal plane,
where a is the normal distance between the equivalent crystal planes (of the same
structure as the surface or the topmost plane of atoms).

4The classical "turning point” of the projectile atoms is located at the distance
where the velocity of the projectile in the direction perpendicular to the surface van-
ishes. This distance depends on the static atom-surface potential and the incident
energy of the projectile atom [7].
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energies are reflected from the surface. These atoms do not penetrate
into the sample and they are most sensitive to the topmost layer of
atoms (surface) [1].

At distances far from the surface, there is a net attraction be-
tween the atom and the surface arising as a consequence of the dy-
namic dipole-dipole interactions. The dynamic dipole component of
the atomic charge distribution induces a similar dipole "image” in the
whole metallic sample, which results in a net attraction. For noble gas
crystals, this ”image” is formed in each atom of the sample and a su-
perposition of such atomic van der Waals interactions is expected to
realistically describe the total van der Waals potential.

For samples of other types, the physical picture of interaction lies
somewhere in between the two extreme cases discussed so far.

If the atoms of the target were fixed at their positions, they would
exert a time independent, static force on the projectile atom and hence,
all the projectile atoms would be reflected elastically, i.e. with the out-
going energy equal to the incident energy. The fact that the atoms in
the crystal move even at zero temperature makes the interaction poten-
tial time dependent. Dynamic interactions lead to processes in which
the energy of separate constituents of the system studied is generally
not conserved [8]. This gives rise to a transfer of energy from the pro-
jectile atom to the target or vice versa, with the total energy of the
whole system (projectile atom + target) conserved. The processes in
which nonzero energy transfer occurs are called inelastic processes.

The points emphasized so far can be easily illustrated on a simple
classical example. We shall represent the projectile atom as a material
point of mass m and energy ¢; moving towards a mass M (representing
the target) on a spring characterized by the stiffness constant k. The
effective potential between the two bodies will be assumed to depend
only on the relative distance between the geometrical centers of the
bodies. One has to solve two coupled Newton equations describing
the motion of both bodies. The coupling is introduced through the
interaction potential. Only one dimension will be considered, i.e. the
projectile atom motion is constrained to the line connecting the two
point masses. Figure 2.1 shows the temporal evolution of the positions
of the two bodies. It is seen that the transfer of energy does occur here,
since the oscillator has a finite amplitude of oscillation (i.e. nonzero
energy) after the scattering event has been completed (after the bodies
have separated so that their interaction can be neglected). This is a
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Figure 2.1: Left: Temporal evolution of positions of projectile atom
and one dimensional harmonic oscillator. Right: The kinetic energy of
projectile atom as a function of time.

typical example of an inelastic scattering event °.

The parameters of this calculation were adjusted to model the He
— Xe/Cu(111) scattering system. Therefore, the projectile atom mass
was set to 4 amu, the target atom mass to 131.29 amu, characteristic
frequency of vibration was set to 2.62 meV (this is a perpendicular fre-
quency of Xe/Cu(111) vibration - see section 9.3), which corresponds
to k = 3.47 N/m, while the parameters of the interaction potential can
be found in section 9.5. They were taken to be the same as for the
He — Xe(111) scattering system (the substrate Cu(111) does not ap-
pear in this calculation, but the frequency of perpendicular vibration
is determined by the substrate properties). Initial He atom energy is
30 meV. The target oscillator was assumed to be at the equilibrium
point with the velocity equal to zero at time £ = 0. Note that the point
where the velocity of the projectile atom vanishes is located at 2.54
AS_ Although this example looks rather oversimplified for application
to atom-surface scattering (the oscillator and the projectile atom are
assumed to behave classically), there have been attempts to solve the

5Note that the scale of the interaction time is a picosecond.

6This is not the turning point to be introduced in Chapter 6 since the target is
allowed to move.
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problem of atom-surface scattering following this line of thought. Of
course, all three dimensions are included in the problem, the surface is
represented by many coupled oscillators and a set of coupled Newton’s
equations is solved. This approach has become known as a generalized
Langevin equation approach or stochastic classical trajectory approrima-
tion [2] and is well known in the literature on atom-surface scattering
[9, 10]. It is expected to work well in applications to heavy projectile
atoms when the quantum corrections are expected to be small (at least
for the projectile atom, whereas the problem of a classical treatment of
the target vibrations still remains). Note that this approach conserves
the total energy in the system.

A simplified quantum approach to the problem will be explained
next. Let us assume that the projectile atom can be treated as a time
dependent force acting on quantized vibrations of the sample atoms.
The time dependence of this force can be obtained by ”freezing” the
atoms in the sample and obtaining the classical, elastic trajectory of
the projectile atom which is then inserted back into the interaction po-
tential making it time dependent. In one dimension this simply means
that if we know the dependence of the atom-target interaction poten-
tial, V(z), on the relative distance between the two "bodies”, z, we can
obtain the time dependence of the interaction by inserting the elastic
trajectory z(t) (obtained by solving the Newton equation for the pro-
jectile in potential V'(z) and subjected to appropriate initial conditions)
back in the potential, which yields V' (2(t)). The response of the target
to time dependent perturbation can then be easily calculated follow-
ing the well established schemes [8, 11]. The information one acquires
from this type of calculation is the time evolution of populations of
vibrational states of the target. The method is further illustrated on a
one-dimensional prototype model with the interaction and vibrational
parameters equal to the ones in figure 2.1. The left part of the figure
2.2 represents the time evolution of populations of harmonic oscillator
levels. The results presented in figure 2.2 were obtained by numeri-
cally solving the coupled differential equations which result from the
formal solution to the time dependent perturbation acting on a system
described by a solvable hamiltonian.

The oscillator was assumed to be in the lowest energy eigen-state
(denoted by ”0” in the figure) prior to collision. One can obtain the
energy transferred to the harmonic oscillator by subtracting its initial
energy from its energy after the interaction has terminated (see the right
part of the figure 2.2). Note that the energy transferred (3.78 meV) is
quite close to the value calculated classically (in figure 2.1, 3.6 meV).
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Figure 2.2: Left: Temporal evolution of population of the levels of a
one dimensional harmonic oscillator. Numbers above the curves corre-
spond to quantum numbers of the harmonic oscillator. Right: Temporal
evolution of the harmonic oscillator energy.

The populations of the levels follow the Poisson distribution law [12]
(see figure 2.3, interaction and vibrational parameters are the same as in
figures 2.1 and 2.2). This is a characteristic of all so called independent
boson models forced by external, recoilless perturbation [12, 13]. It is
also interesting to note that the energy of the target harmonic oscillator
is not a monotonously growing function of time which is something one
could expect. At ¢t = 1.1 ps, the oscillator energy has a maximum,
which is a consequence of the interplay of the populations of harmonic
oscillator levels and level excitation and de-excitation probabilities.

This type of approximation has become known as the forced oscilla-
tor model or the recoilless trajectory approrimation. Although it treats
the target vibrations in a quantum mechanical manner, it has several
drawbacks. What is most important, the law of energy conservation is
not satisfied: the atoms in the sample gain energy from the projectile
atom which is assumed to scatter elastically without recoil. However, as
this type of calculation has been widely used for description of atom-
surface scattering [14, 15, 16, 17, 18, 19, 21| , a variety of schemes has
been proposed for remedying the drawbacks inherent in this approach
[20, 21]. A realistic application of the trajectory approximation to the
problem of atom-surface scattering will be outlined in Chapter 7.
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Figure 2.3: The populations of quantum harmonic oscillator levels after
the interaction has terminated.

In the following two chapters I shall describe two prerequisites needed
even for simple calculations as those presented above, namely the atom-
target interaction potentials and the model of vibrational dynamics of
the target (phonons in the discussed two simple models were repre-
sented by a single classical (quantal) oscillator with characteristic fre-
quency of 2.62 meV). These two ingredients of the model form a base
necessary for calculating the scattering transition rates in all atom-
surface scattering theories.



12

CHAPTER 2. BASIC CONCEPTS...



Chapter 3

Interaction of inert atoms
with crystalline surfaces

If I kiss you, that is a psychological interaction.

On the other hand, if I hit you over the head with a brick,
that is also a psychological interaction.

The difference is that one is friendly and the other is not so
friendly.

The crucial point is if you can tell which is which.

Dolph Sharp, "I'm O.K., You’re Not So Hot”
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14 CHAPTER 3. INTERACTION OF INERT ATOMS...

3.1 Static component of the
atom-target interaction potential

The knowledge of a precise atom-target potential is of essential im-
portance even for simple calculations as those presented in the pre-
ceding chapter. In the present chapter I shall address the problem of
obtaining information on the interaction potential. The simplest case,
for which a rather accurate answer to the problem can be given, is
the atom-surface scattering system in which the target is a noble gas
crystal 1. There, the charge delocalization is expected to be of minor
importance and we can expect that the atom-target interaction poten-
tial, V(r), can be constructed as a superposition of atomic potentials,
v(] r—r; |) (here r; are the positions of the target atoms), known very
accurately from the crossed molecular beam scattering experiments 2
[22]. The same holds for ionic crystals such as LiF due to the closed
shell electronic structure of ions making up the crystal and the absence
of a delocalized electronic charge [26].

3.1.1 Pairwise summation procedure

When the target is noble gas or ionic crystal, we can write the total
potential as a pairwise sum of projectile-atom(ion) potentials:

Vir)=> v(r—x]). (3.1)

J

Here r is the radius vector of the projectile atom, {j} is the set of indices
enumerating the atoms in the sample and rg is the radius vector of
atom j in its equilibrium position. Note that we have a prior: assumed
spherical symmetry of the pair potentials, v, which is reflected in the
fact that these potentials depend only on the modulus of the relative
radius vector. We shall further illustrate the procedure of pairwise
summation on He — Xe(111) potential. The He-Xe atomic potential
is known rather accurately from the scattering experiments in the gas-
phase [22, 23]. We take the functional form of this potential from

LA typical example, which is going to be throughly examined in this section, is
the scattering from Xe(111) surface, see section 9.5.

2The comparisons of the theoretical and experimental differential collision cross
section for the elastic scattering serve as an excellent test of various interaction
potential models.
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reference [23]:

_ Cs , Cs  Ch ( Tm )2
vir,) =Ae”™ " — | —+—+ —|exp|—({1.28— —1 3.2
(v (G4 Gs Gt e e (52
where r, is the distance between the He and Xe nuclei. The last expo-
nential term in equation (3.2) which ”"damps” the attractive part of the
potential applies only if r, < 1.287,,. The parameters of this potential

are specified in the table below 3:

‘ Parameter ‘ Units ‘ Value ‘
A meV | 8116570
a 1/A 3.93
Cs meV AS | 11014
Cs meV A® | 56766
Cho meV A0 [ 334761
T'm A 5.03

The potential V(r) in equation (3.1) depends on three spatial vari-
ables, so it is generally difficult to represent in all details in just one
plot. In figure 3.1 we plot the He — Xe(111) potential, V(r), as a
function of two coordinates (z,y) in the surface plane and for two val-
ues of coordinate z which is perpendicular to the surface plane. The
origin of coordinate system (z = 0,y = 0,z = 0) is chosen to be in
the center of the Xe atom in the topmost layer. The summation over
the Xe(111) crystal sites has been performed by taking into account
128 x 128 atoms in the topmost Xe(111) layer and the same number
of atoms in the Xe(111) layer located below the topmost layer. The
nearest neighbor Xe-Xe distance has been set to a = 4.37 A. Figure 3.1
displays the result of this calculation. Note that this figure represents
the static part of the potential, because the positions of the atoms in
the target were fixed to their equilibrium points. To perform the sum-
mation in equation (3.1) one has to take care about the crystallographic
structure of the target. Due to the specific functional dependence of
the repulsive component of the atom-atom potential, the layers below
the topmost layer of atoms contribute significantly only to the attrac-
tive part of the total potential, while the repulsive part of the potential
is influenced mainly by the topmost layer (in fact, only by very few
crystal atoms closest to the projectile atom).

Figure 3.1 illustrates an interesting feature, characteristic of all in-
ert atom-surface potentials. Namely, the equipotential surfaces have

3Consult reference [24] for other possible choices of He-Xe pair potential.
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Figure 3.1: Left: He — Xe(111) interaction potential as a function of
and y coordinates for z = 2.5 A. Right: Same for z = 3.7 A. Note the
scales on the z-axis. Equipotential contours are drawn for the values
of the potential denoted by labels on the z-axis.

the appearance of a corrugated tin roof. This wavy-like behavior of the
equipotential surfaces is in fact known in the literature as the corru-
gation of the potential. This is a consequence of the inhomogeneous,
discrete nature of the crystal. Such a periodic modulation of the atom-
target potential also implies that the projectile atoms will diffract under
the influence of this potential if their wavelengths are comparable to the
period of the spatial modulation. This indeed happens in the scattering
of thermal energy inert atoms from surfaces since at these incident en-
ergies atomic de Broglie wavelengths become comparable to the lattice
parameter of the target. Diffracted projectile atoms continue to move
in the final direction which is fixed by the requirements of parallel mo-
mentum and energy conservation, which means that diffraction is an
elastic event because the energy of the projectile atom after diffraction
remains equal to the initial energy *. Thus, the diffracted projectile
atoms will be experimentally detected only if the source and the de-
tector are in the ”right” positions. This happens for the discrete set
of relative angles between the source and the detector of the projectile
atoms. This kind of measurement can be used to determine the two-

4A comprehensive review of atomic beam diffraction from solid surfaces can be
found in reference [25].
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dimensional geometry of the target [2, 25]. In fact, the nearest neighbor
Xe-Xe distance, a, which was set to 4.37 A in the calculations above
was determined from such a measurement (figure 3.2). Figure 3.2 dis-
plays the experimental diffraction spectrum obtained by scattering of
He atoms from Xe(111) target. Magnitude of the diffraction peaks de-
pends on the corrugation of the target surface. We can say that the
Xe(111) surface is moderately corrugated ®>. We can represent the pe-
riodic, corrugated nature of the static component of the interaction
potential in a more "natural” way. Imagine that we send a beam of
classical particles impinging along the target surface normal. The par-
ticles all have fixed kinetic energy FE;. The particles will reflect from
the surface at the point T" where

E;, = V(xTa yr, ZT)- (3-3)

If we vary xr and yr coordinates of the impinging projectile, the re-
maining turning-point coordinate, zr is also going to vary since all
three coordinates must satisfy equation (3.3). Thus, we can plot zr
as a function of 7 and yr with incident energy, F; as the parameter
of this plot. This kind of plot is called the turning point profile plot.
Figure 3.3 represent this plot for He — Xe(111) scattering system for
two characteristic incident energies. A parameter which can be used
to quickly estimate the magnitude of the potential corrugation is the
so-called ”peak-to-peak-corrugation parameter” which is given by the
difference between the farthest and the closest turning point. This
parameter’s value depends on the projectile incident energy. This is
illustrated in figure 3.4. Another way of representing the interaction
potential is to plot the z-dependence of the potential with z and ¥y co-
ordinates fixed. Figure 3.5 displays such plot for three characteristic
points in (z,y)-surface plane of Xe(111). It is seen that the potential
has a minimum at some distance above the plane passing through the
centers of topmost atoms (surface plane). This feature results from an
interplay between the attractive and repulsive parts of the potential
which produces a minimum typically at 3-4 A above the surface plane.

Ilustrative examples of the procedure of pairwise addition of the
potentials can be found in references [26, 27, 28, 29].

SSurfaces of alkali halides (such as LiF) exhibit much stronger intensities in HAS
[26] indicating strongly corrugated surface potentials probed by He atoms.
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Figure 3.2: He-atom angular distribution along the I'-M and I'-K az-
imuths of Xe(111) surface. The left sketch at the bottom represents the
surface Brillouin zone of the Xe(111) surface. The right sketch displays
the structure of Xe(111) surface in the direct space. Full thick line
denotes the surface Wigner-Seitz cell of Xe(111).
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Figure 3.5: He — Xe(111) interaction potential as a function of coordi-
nate perpendicular to Xe(111) surface, z, for three characteristic points
in (z,y) plane as denoted in the inset.

3.1.2 Other procedures for obtaining the static com-
ponent of the interaction potential

The simple approach of pairwise summation of atomic potentials is less
reliable for metallic surfaces, for which we expect that the electrons
in the outer shells of metal atoms are largely delocalized. This means
that there is a contribution to the electronic charge distribution of the
metal spread over the crystal sites. In this case one has to perform
a total energy calculation as a function of the distance of the projec-
tile atom from the surface. Various approximation schemes have been
used in order to obtain the atom-target potentials. Historically, the
earliest ones were based either on the jellium model [2, 30] or Linear
Combination of Atomic Orbitals model (LCAO). The calculations of
self-consistent Hartree-Fock type have been reported in reference [31].
Recent advanced schemes such as the various types of density functional
approaches combine the discrete nature of the metal with the improved
accounts of correlation effects [30, 32, 33, 34]. All of these calculations
are beyond the scope of this work. It is tempting to extend the simple
approach of pairwise summation to the case of metallic surfaces. The
pair potentials, v, we need in this case are not the gas-phase potentials.
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They must be suitably constructed to at least approximately include
the effects of delocalized negative charge. In this case, we think of pair
potentials v as the effective projectile-site potentials. This approach
has been used in the literature with success. In reference 28|, the pair
potentials, v, have been constructed to reproduce the results consistent
with the experimental data for both the bound state energy levels of
Vo(z) and the diffraction probabilities. The potentials v used in this
reference depend only on modulus of relative distance between the pro-
jectile and a particular site. To model the anisotropic rearrangement
of the atomic electron cloud, one has to assume that the pairwise po-
tentials are also anisotropic. A superposition of ellipsoidal pairwise
potentials has proven to be quite successful (see e.g. reference [36]).

Regardless of the actual approach utilized to obtain the interaction
potential, the resulting potential must reflect the periodicity of the
crystal lattice.

3.1.3 Some general properties of the static com-
ponent of the interaction potential

Quite generally, due to the periodicity of the total potential in the
directions parallel to the surface, the static part of the total potential
can be written as 2D Fourier series:

Vitatic(r) = Vo(2) + Z Vg (2)elSR, (3.4)
G#0

Here, R = (z,y) is the vector in the surface plane and G is a 2D
reciprocal lattice vector (see e.g. [2]) in the surface plane. The term
G = 0 has to be excluded from the summation in (3.4) because it has
been explicitly written as Vy(z). This term is the laterally averaged
static component of the interaction potential. This can be seen right
away since

1 .
Vg(Z) = L—% /d2ReizG.RV?9tatic(r)a (35)

where L% is the total area of the surface of the sample. Since the
equation above holds also for G = 0, we see that V;(z) is nothing but an
average of the interaction potential over the target surface plane. When
the total interaction potential can be written as a superposition of pair
potentials, as in equation (3.1), relation (3.5) additionally simplifies
according to

1 )
Va(z) = L—Q/dQRe_’G'RZU(r—rj)
S J



22 CHAPTER 3. INTERACTION OF INERT ATOMS...

= oz Z/d2Re ICRy(r —17,)

S Lk

— LQz/dZ e CRYR — Ry + 220 — S,).  (3.6)

S Lk

Here, index j was replaced with two indices ([, k) which count the atoms
within the crystal plane and the crystal planes themselves, respectively.
Vector S, connects the centers of the two-dimensional Wigner-Seitz
cells in the topmost crystal plane and the crystal plane . zg is the
unit vector pointing in z-direction.

Assuming that the pair potential, v, does not depend on the angle
in the surface plane, ¢, equation (3.6) simplifies to

2 iG-
_ EZeGSr«/O RJ(|G|R)w (\/R2 (e )’ ) dR,
(3.7)
where we have used the integral representation of the zeroth order
Bessel function Jy,

T
Jo(w) = %/0 cos(w cos ¢)dg. (3.8)
A, is the area of the two dimensional (2D) Wigner-Seitz cell of the
target given by
4= L5 (3.9)
" Nop’ .
where N,p is the number of 2D Wigner-Seitz cells in each crystal plane,
k. Note also that S, -zg < 0. Figure 3.6 represents the Fourier compo-
nents Vg (z) of the He — Xe(111) potential which was obtained as in
the previous subsection.
A convenient (but approximate - see figure 3.5) representation of
the static part of the interaction potential is

Vstatic(r) = V(2 — £(R)), (3.10)

where £(R) is called the effective static corrugation function. Proper
choice of £(R) leads to quite a satisfactory description of the potential
corrugation profile obtained from the experimental diffraction spectra
[25].

The present state of the art regarding the theory of interaction po-
tentials is that the part of the potential, written explicitly as Vy(z),
is generally represented by a sum of two terms [6], one of which is
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Figure 3.6: Fourier components of He — Xe(111) interaction potential
as a function of coordinate perpendicular to Xe(111) surface, z. The
choice of basis for the inverse space is denoted in the inset. The notation
is: Viun(2) = Vig(2), G = mgy + ngy, |g1| = |g| = 1.66 1/A.

repulsive and the other is attractive. The repulsive part of the interac-
tion potential originates from the overlap of the surface electronic wave
functions with the closed shell projectile atom orbitals. The attractive
part is due to van der Waals forces. The laterally averaged projectile
atom - surface repulsion is generally well approximated by [6]

Viepo(2) = Ve % (3.11)

At large distances from the surface, the attractive part of the potential
can be represented as [6]
Cs

(2 = zeps)*’
where the coefficient C5 can be related to the projectile atom polar-
izability and the surface response function [6, 31]. The values of z.;
appearing in the equation above are typically 1 A for low indexed metal
surfaces [31]. Although expression (3.12) is valid only at large distances
z, it is quite common to extend its validity to all z distances of interest

(i.e. for z several atomic units away from z.s) and write the potential
Vo(z) as

Vatto(2) = — (3.12)

Cs

e

(3.13)



24 CHAPTER 3. INTERACTION OF INERT ATOMS...

It is also possible to ”damp” the attractive part of the potential as it
was done in equation (3.2), which guarantees physical behavior of V;(2)
even for very small values of z.

3.2 Dynamic component of the
atom-target interaction potential

The full atom-surface interaction potential is time dependent since
the atoms in the target oscillate around their equilibrium positions.
Assuming that we can apply the pairwise summation procedure de-
scribed earlier to the oscillating atoms as well and expanding the in-
teraction potential up to first order in atomic displacements (assuming
that atomic displacements are small relative to the equilibrium inter-
atomic distances), we can write

Ve, {u}) = Viaie(r) + 3 Veo(| =15 ) - 05 + O({uj})
= Vitatie(r) = 22 Vev(| T =15 [) - u; + O({uj})(3.14)

Here, u; is the time dependent displacement of the j-th atom in the
crystal from its equilibrium position. All the derivatives of pair poten-
tials are needed inr; = r?. The question of finding the time dependence
of u; still remains unanswered. The answer to this question will be
given in Chapter 4. It must be noted that here we have resorted to the
assumption that the time dependence of the total potential is governed
solely by the motion of crystal sites. A simple appearance of equation
(3.14) is the result of this assumption. The problem of metallic targets
for which we can expect that the electrons do not adiabatically follow
the motion of the ion cores is a more difficult one. Namely, there is
an additional term in the change of the potential which is associated
with the rearrangement of the electronic density around a particular
site. This issue has been discussed in the literature 35, 36, 37]. One
could assume that the ion cores in their motion rigidly ”"drag” their
part of the physical space. The pair potentials must be suitably mod-
eled for this case. This procedure has been used in the literature with
very satisfying results [28, 36]. Another approach assigns new degrees
of freedom to the nearly free metal electrons i.e. the Born-Openheimer
approximation for the motion of the electrons is relaxed. One then
has to solve the coupled equations of motion for appropriately defined
so called ”pseudocharges” and the ion cores. This poses a more diffi-
cult problem, but some results have been achieved using this approach
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Figure 3.7: Left: The static component of He — Xe(111) interaction
potential with one Xe atom at (0,0.15 A,0) (i.e. moved within the
surface plane). Right: The difference introduced in the interaction
potential with respect to the case when the Xe atom is at (0,0,0).

[37, 35]. We shall further illustrate the change of the interaction poten-
tial when a particular site is moved on He — Xe(111) scattering system
where we can expect that equation (3.14) holds.

We can envisage that the interaction potential changes in different
ways when a particular site is moved within the surface plane and
perpendicular to the surface plane. This is illustrated in figures 3.7
and 3.8.

It is quite clear from these figures that the movement of Xe atom in
the direction perpendicular to the surface plane produces much larger
change in the absolute value of the interaction potential. Therefore, we
can anticipate that He atoms are going to be much more ”sensitive” to
movements of Xe atoms perpendicular to the Xe(111) surface than to
the Xe-atom movements within the Xe(111) surface.

3.3 Convenient approximations to
the interaction potential

In this section I shall specify some convenient approximations to the
static and dynamic components of the interaction potential that will
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Figure 3.8: Left: The static component of He — Xe(111) interaction
potential with one Xe atom at (0,0,0.15 A) (i.e. moved perpendicular to
the surface plane). Right: The difference introduced in the interaction
potential with respect to the case when the Xe atom is at (0,0,0).

be adopted in the calculations presented in Chapter 9.

For mildly corrugated surfaces one could neglect all the components
Ve of the static potential in equation (3.4) with G different from zero.
This means that in the treatment of inelastic processes we consider
the static potential as completely flat in the directions parallel to the
surface plane. This, however, does not mean that we disregard the
dynamic corrugation of the interaction potential which is introduced
by vibrations of the target crystal sites (see figures 3.7 and 3.8). The
G # 0 components of the potential play a major role in the diffraction
spectra of elastically scattered projectile atoms, but are expected to
have minor influence on the inelastic events which are the subject of
this thesis.

It is quite convenient to approximate the remaining part of the
potential, V;(z), with the Morse potential:

zZ — 2

d

Vo(z) = D exp(—z%z") — 2exp(— )| - (3.15)
Here, D is the depth of the potential well at distance z, from the sur-
face plane and d/2 is the range of the repulsive part of the potential.
The reason for this simplification is that the transition matrix elements
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needed in inelastic atom-surface scattering calculations (see Chapter
6) can be expressed in a closed analytic form for the Morse potential
[38, 39], both for the transitions to continuum and bound states of the
interaction potential, but must be calculated numerically otherwise.
The latter does not pose a major problem but it slows down the calcu-
lations (Chapter 9). Additionally, if we chose Vj(2) to be represented by
the Morse potential, the coupling of the projectile atoms to the atomic
vibrations in all crystal slabs can be easily calculated (see section 6.3)
when the targets are noble gas crystals. The use of the Morse poten-
tial instead of the potentials given numerically has been shown to be a
good approximation if the energies of the projectile atom are not too
low (below 1 meV) [40]. For low energies, the precise functional de-
pendence of the attractive van der Waals component of the interaction
potential becomes a crucial factor (this is extremely important for the
quantum reflection phenomena in sticking [41]). The attractive part of
the Morse potential decays exponentially with distance z while the true
potential decays as third inverse power of distance. Therefore, we can
expect that the Morse potential approximation will be inadequate for
projectile atoms with very low incident energies [40]. In this case, the
projectile atoms ”spend a lot of time” in the attractive region of the
interaction potential and are, therefore, very differently accelerated in
the exponential and 1/23 potentials. On the other hand, the repulsive
part of the Morse potential has a proper functional dependence, since
the exponential repulsion has been shown to be a good approximation
to the repulsive interactions calculated for the systems with overlap-
ping charge distributions. For atom-surface scattering, in the absence
of hybridization effects (see reference [4]) the repulsive component of
interaction, V;., can be approximated by [42]

Viep.(1) = Ap(r), (3.16)

where A is a constant (A ~ 45 — 90 eV A3 [6]), only weakly depen-
dent on the target characteristics, and p(r) is the unperturbed target
electronic density. The electronic densities of the systems in which
electrons are bounded in a finite region of space by a potential should
decay approximately exponentially in the region where the confining
potential exceeds electronic energies.

Figure 3.9 represents a comparison of the Morse potential and V5 (2)
part of the He — Xe(111) potential. The Morse potential parameters
were set to D = 6.4 meV, d = 0.641 A and z, = 3.49 A. It is clear
that the potentials are very similar, except in the region of distances
where the long range character of the van der Waals interaction gives
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Figure 3.9: A comparison of the Morse interaction potential (dashed
line) and Vj(z) part of He — Xe(111) potential (full line) and their
scattering wave-functions for three characteristic values of incident en-

ergy.

the dominant contribution to the total potential. Note, however, that
the corresponding scattering wave-functions of the two potentials show
clear differences, especially for low incident energy of the projectile
(He).

A word of caution concerning the fitting of the Morse potential to
the calculated data seems to be appropriate here: It is very difficult
to fit the sum of exponential functions to the dataset. However, for
scattering calculations, the Morse potential should agree with the true
potential in two crucial aspects. First, both potentials should have the
same derivative around the projectile turning point and second, both
potentials should have the same (z,V(z)) position of the minimum.
The reason for this will become clear in chapters which follow.
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The preceding chapter has brought to the fore the problem of finding
solutions of equations governing the time dependence of atomic posi-
tions in the target. This is an old question of finding the normal modes
of a system of interacting particles which has been addressed many
times in the literature both classically [43] and quantum mechanically
[11, 44]. However, the answers pertain mostly to infinite, three dimen-
sional systems exhibiting discrete translational invariance in all three
spatial directions. The target used in atom-surface scattering experi-
ments is somewhat different: it is at best a semi-infinite solid since its
surface is exposed to the beam of projectile atoms. In this chapter I
shall briefly outline the concept of normal modes and its application to
the geometry of infinite and semi-infinite crystals.

4.1 Small oscillations
and normal modes

Consider a system of N mutually interacting bodies. If the bodies
are arranged in the a dimensional space, we will need 3N coordinates
{q1, 2, ---, g3 } to specify the positions in the system plus 3N conjugate
momenta {pi, ps, ..., p3n } to specify completely the position of the sys-
tem in the phase space. The system is said to be in equiltbrium when
the generalized forces acting on the system (i.e. on each particular

constituent) vanish:
v
F; = = 0. 4.1
{ 9qi }0 b

Here F; is the force deriving from the change in the i-th coordinate
(1=1,2,...,3N) and V is the potential energy of the system for which
we assume to depend only on the set of ¢’s. We shall be interested
in the motion of the system within the immediate neighborhood of
the configuration of a stable equilibrium. If we displace the system
from the point of stable equilibrium, it will remain close to this point
at all times during its motion in the phase space, performing small
oscillations around the point of stable equilibrium. The deviations of
the generalized coordinates ¢ from equilibrium will be denoted by 7;:

6=+ (42

Expanding the potential energy about the point of stable equilibrium
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we obtain

ov
V(ql,...,Q?)N) = V(Q?aaq:(})N)+Z{aq} T
i t)o

1[0V 3
il L G 4.

1,J
The terms linear in 7; vanish as a consequence of the equilibrium con-
dition in equation (4.1) and we are therefore left with quadratic terms

as the first approximation to V' . Shifting the arbitrary zero of the
potential to V(¢?, ..., ¢%y) we have

1 o0*V 1
V=—Z{7} miny = 5 VijThin;- (4.4)
24 \0gdg; [, "7 2 N

It is obvious from the definition above that the V;;’s are symmetric with
respect to ¢ and j i.e. Vi; = V.
A similar series expansion can be obtained for the kinetic energy 7":

1 1
T= ) Z mi]'qz{q;' =5 Z mijnz{n;‘- (4.5)
1,J i,j

Here the primes denote first derivatives with respect to time ¢. In
general, the coefficients m;; are functions of the coordinates g, but they
may be expanded in a Taylor series about the equilibrium configuration:

8mi-
mij (g1, -, ¢3n) :mij(q?,...,qu)—i-Z{ 5 J} Nk + - (4.6)
% 9k o

As equation (4.5) is already quadratic in the 7;’s we need to keep
only the values of m;;’s at equilibrium configuration. Denoting T;; =
mi;(q), ..., q3y) we can write the kinetic energy as

1
T =35> Ty (4.7)
1,5

The coefficients T;; are also symmetrical, T;; = T};;. The Lagrangian of
the system is therefore given by

L=T-V= 3 > (Tigmim; — Vigming) (4.8)

1,

Keeping only the second term in expansion (4.3) is called the harmonic
approximation.
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which leads to the following Euler-Lagrange equations of motion:

> (T + Vign) = 0. (4.9)

J

If we try a solution of the form
i = aie (4.10)

then the equations of motion lead to the following equation for the
amplitude factors a;’s:

Z ‘/;jaj — w2TZ~jaj =0. (411)
J

This system of linear homogeneous equations for the a;’s can have a
solution only if the determinant of the system vanishes:

Det{Vi; — w*T;;} = 0. (4.12)

This determinantal condition yields an algebraic equation of 3/N-th de-
gree for w?. The allowed frequencies w? which result as a solution to
equation (4.12) are called resonant frequencies of the system or eigen-
frequencies. Tt can be shown that all w? are real which is a consequence
of the hermitian property of T (kinetic energy) and V (potential en-
ergy) matrices. Every value of wy yields a set (vector) of coefficients
a;,t = 1,2,...,3N which we call eigenvector a,. If we arrange all 3N
eigenvectors (the possible degeneracy in w is excluded here) as the
columns of a matrix, we obtain a square matrix A = [a;;]. The vector
ay is not uniquely determined by the value of a particular wg. Addi-
tional condition can be obtained by further requiring that A~'TA =1
(therefore, the masses appear in the normalization) which is convenient
since then the matrix A diagonalizes both the kinetic and potential en-
ergy matrices. Since the eigenvectors are orthogonal, the matrix A has
an inverse A~! which is equal to its transposed matrix A, Al =A.

A complete solution of the equations of motion involves a superpo-
sitton of oscillations with all the resonant frequencies:

n; = ZCkaike_iw’“t (413)
k

We define a new set of coordinates §; related to the original coordi-
nates by equations

n = Z%fj; n = A¢, (4.14)
J
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where & (n) is a vector with & (7;) as components. It can be relatively
easily shown [43] that the Lagrangian expressed in the new coordinates
is

L= Y (66— wie)). (115)
k

Each of the new coordinates is thus a periodic function of time in-
volving only one of the resonant frequencies. We call the &’s the normal
coordinates of the system. The complete motion of the system can be
constructed as a sum of the normal modes weighted with appropriate
amplitude and phase factors contained in Cy (equation (4.13)). It is im-
portant to note that normal coordinates act as independent harmonic
oscillators. Therefore, we can in principle excite a particular normal
mode without exciting other normal modes.

A simple, one dimensional, surface-science-related application of the
normal modes calculation is given in Appendiz A.

4.2 Normal modes in
infinite crystals - phonons

In this section we shall extend the general formalism of the previous
section to infinite crystals. In crystals, the atoms occupy positions
(crystal sites) which are arranged as the knots in a three dimensional
grid. To be less pictorial and more exact, all the crystal cells can be
reached from any other fixed crystal cell with a translation specified as
2.

I'(’I’Ll, Nnag, TL3) = n1L1 + TL2L2 + TL3L3. (416)

Here r(nq, ng, n3) is the vector specifying the translation needed, nq, ny
and ng are integers (nyo3 = —00,...,—2,—1,0,1,2,...,00) and Ly, Ly
and Lg are vectors specifying the nature of the crystallographic ”grid”
or lattice vectors.

This discrete translational invariance of the crystal simplifies the
calculations of the normal modes. The general coordinates we chose
here are the displacements of the atoms from their equilibrium posi-
tions. The equilibirium position of an atom (site) in a general lattice
is specified by the cell indices ni,ny and n3 and an additional index,
a = 1,2,...,J, labeling the different atoms within a unit crystal cell

2The crystal cell can, however, contain more than one atom, so that the addi-
tional index for labeling the different atoms within a unit cell may be needed for
specifying the exact position of the atoms (crystal sites) themselves.
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composed of J atoms. Therefore, the set of generalized coordinates is
{u(ni,n2,n3,a)}. This set corresponds to the set of 7’s in equation
(4.2). The displacements are of course vectors since we can expect ev-
ery atom of the crystal to move in all three directions. The kinetic
energy of the a-th atom in crystal cell p = (n¥, n5, nf) is given by

M,
T(a,p) = 711'(10, a)®. (4.17)
Here, M, is the mass of the a-th atom in crystal cell p. The total

kinetic energy is given by the sum of energies in equation (4.17) over
the crystal sites

M,
T=3 - u(p, a)?, (4.18)
p.a
The Euler-Lagrange equations of motion (4.9) reduce to
0*V
Myul(p,a) = — { } ug(p’,a’), 4.19
0=~ 5 G, 0 019

where «, 5 = x,y, 2 and subscript 0 means that the derivatives should
be taken in the equilibrium configuration of the crystal. It is quite
convenient to introduce a new notation for the second derivatives of
the potential energy:

Va,/)’ (pa pla a, al) = Voz,ﬂ(p - pI: a, CL,)

- oo } (120)

Ouy (p, a)dug(p’, a')

The first identity in the equation above follows from the fact that the
second derivative depends only on the relative cell index p — p' and not
on the indices p and p’ individually. We now use Bloch’s theorem which
allows us to explicitly employ the three dimensional periodicity of the
crystal [11]. The normal mode solutions have the form of 3D Bloch

functions: .

NM,

Here, r(p) is the vector specifying the position of the atom of the crystal
unit cell p, i.e.

u(p,a) = e(q, a)uge arP)-wl@h, (4.21)

r(p) = n{Ly + nfLy + njLg. (4.22)

N is the number of unit cells in the crystal, e(q, a) is the polarization
vector of the normal mode characterized by the wave vector q, fre-
quency w(q) and associated with a-th atom within the crystal unit cell.
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Figure 4.1: Geometry and the notation used in this section, explained
on a CsCl type of crystal which has two atoms per unit cell (J = 2).

The polarization vector specifies the vector character of the displace-
ments i.e. it specifies in which directions atoms oscillate. The time
dependence of collective variables (normal modes) is explicitly written
as e~(@* The normalization of u(p, a) with respect to atom mass, M,,
has been introduced for later convenience. Inserting equation (4.21) in
(4.19) we obtain an algebraic set of equations for the polarization vec-
tors, e(q, a):

w’eq(a) — Y Dag(a,a,a’)eg(a’) = 0. (4.23)
B,a”

Here

!

Da,ﬂ(qa a, a'l) = Dﬂ,a(qa a, CL)* = Da,,@(_qa a, a’l)*

)eiq-(r(p’)—r(p))’

1
———— Voslp—1',a,d
\/MaMa’ p’
(4.24)

is called the dynamical matriz. Note that index (crystal cell) p can
be chosen at will, since the elements of the dynamical matrix do not
depend on this choice.

In order that the nontrivial solution exists for the system of equa-
tions in (4.23), its determinant must vanish. Therefore, we have:

‘w2(q)5a5/36a7al - Da;ﬂ (q’ a/’ a’)| = 0' (4'25)
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The above equation yields the dispersion relations of the system i.e.
dependence of the mode’s frequency on the wave vector of the mode.
Equation (4.25) generally yields 3J real solutions (or phonon branch-es)
w(q, s) for a particular q where s = 1,2, ..., 3J 3. Each of them has a dif-
ferent polarization vector specifying the way atoms oscillate. Polariza-
tion vectors e(q, a) are easily found (by the matrix diagonalization pro-
cedures) as the eigenvectors of the matrix w?(q)da 5040 — Das(q, a, a').
The number of modes we obtain by the diagonalization procedure is
3J for each q in question. We label the normal modes by index s,
s =1,...,3J. Additional normalization condition needed for the unique
solution is imposed on the polarization vectors of the same wave vector
modes as *:

Y e*(a,a,5)-e(q,a,s") =69 5,8 =1,..,3J. (4.26)

and
Z EZ(q, a, 8)6/3’ (qa ala 8) = 5a,,35a,a’ (427)

The modes found in the way described are called phonons and they
diagonalize the Lagrangian of the problem in the same way as in equa-
tion (4.15), therefore the modes behave as independent harmonic oscil-
lators. This means that the phonons do not mutually interact. They
begin to interact if we include the derivatives of the interaction po-
tential of orders higher than second, going beyond the harmonic ap-
proximation [45]. Figure 4.2 represents the dispersion relations of Xe
crystal calculated along the triangular path in the inverse space (I'-L-
X-T'). Note that the normal modes can be degenerate along the high-
symmetry directions in the inverse space. Note also that the normal
modes were divided in longitudinal and transversal modes. The longitu-
dinal (transversal) modes are the ones characterised by the vibration of
atoms which is parallel (perpendicular) to the direction of mode propa-
gation (defined by q). The method which was used to obtain this figure
will be discussed in more detail in section 4.4.

4.3 Normal modes in semi-infinite
crystals - slab method approach
and surface phonons

3The reality of the solutions is a consequence of hermiticity of the D matrix.
4Additional condition needed to completely specify the polarization vectors is of
course completely arbitrary. It is more or less a question of convenience.
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Figure 4.2: Phonons in Xe crystal calculated by lattice dynamics ap-
proach.

The situation becomes more complicated when we deal with semi-
infinite crystals. Here we cannot exploit the discrete translational in-
variance in all three directions of space. However, there are still two spa-
tial directions, lying in the surface plane and we can apply the Fourier
series approach in these directions. We must leave the direction per-
pendicular to the surface of the sample in all of the calculations - it
will not be adequately represented by a wave vector quantum number.
We can imagine the semi-infinite crystal to be represented by a number
of two dimensional sheets (the dashed plane in figure 4.3) containing
atoms of a particular crystal plane. The phonons in a particular sheet
can be represented by a two dimensional wave vector lying in the sheet,
but we must additionally specify the "number” of the sheet i.e. how
much is a particular sheet separated from the topmost layer of atoms.
Therefore, integer ”quantum numbers” represent the direction perpen-
dicular to the surface of the crystal. The eigen-frequencies will be seen
not to depend on this artificial labeling of the sheets (crystal planes).
The method described in the previous section remains more or less
unchanged. Actually, if we imagine the crystal of finite thickness, com-
posed of a certain number of crystal planes, the method of the previous
section can be applied in a straight-forward fashion. Namely, we can
define the unit cell of finite-thickness crystal to be the ”column” of 3D
crystal unit cells ranging from one to the other "side” of the crystal
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4

Figure 4.3: The ”column” unit cell (dashed atoms) for the simple cubic,
4 layer thick crystal. The whole crystal can be reproduced by applying
the translation group (defined by the two dashed arrows in the topmost
plane) to the ”column” unit cell.

(see fig. 4.3)%. In this manner, every atom in the ”column” unit cell is
to be treated as we treated different atoms in the 3D unit cell (previous
section). We will introduce somewhat different notation here, denoting
by index k atoms which belong to different crystal planes (”sheets”) of
the crystal. Note that this index is completely equivalent to index a(a’)
from the previous section. The number of modes we obtain by aplying
this method to the thin piece of crystal is much larger than in the case
od 3D infinite crystal due to the large number of atoms constituting
the ”column” unit cell of crystal slab. Due to the specific geometry of
the crystal employed in the calculation described, the method is usually
caled the slab lattice dynamics method ©.

There is an additional simplification arising from the two-dimensional
character of the phonon wave-vector, Q . In the actual application of

5The ”column” unit cells are more complicated (and more difficult to plot) for
FCC and BCC crystals. They are not always perpendicular to the topmost crystal
plane.

6From Webster’s Revised Unabridged Dictionary (1913): Slab /Slab/, n. [OE.
slabbe, of uncertain origin; perhaps originally meaning, a smooth piece, and akin
to slape, Icel. sleipr, slippery, and E. slip, v.i.] A thin piece of anything, especially
of marble or other stone, having plane surfaces. —Gwilt.

"We follow the usual convention, denoting the two-dimensional vectors with bold
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Figure 4.4: Dispersions of phonon modes obtained by applying the slab
method to Xe(111) crystal composed of 80 Xe(111) crystal planes.

this method, the case of finite thickness crystal turns out to be more
complicated than the 3D infinite crystal due to the fact that one has
to numerically generate the ”column” unit cell, accounting properly for
the symmetry of the crystal in question. The same approach can be
used if the atoms in the crystal are not all of the same kind. This will
be e.g. the case for ionic and covalent crystals and adlayers on metal
surfaces which are of particular interest in this work. The generaliza-
tion of the above approach in this direction is rather straightforward
but the notation becomes even more messy. The details can be found
in reference [46]. Additional complication arises when the basic con-
stituents of the crystal arrangement are not atoms but molecules. One
must keep track of internal molecular modes which increase the size
of the dynamical matrix. Figure 4.4 displays the normal modes of Xe
crystal terminated with its (111) surface. The calculation displayed
was performed with 80 Xe(111) crystal planes. The most striking
feature of figure 4.4 is the appearance of the modes which detach from
the quasi-continuum of other modes (the quasi-continuum becomes the
true continuum when the number of slabs tends to infinity). These de-
tached modes are localized mainly in the topmost slab of atoms which
can be seen by inspecting the mode polarization vectors. They are
therefore called the surface phonons. One of these modes is dominantly

capital letters.
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z-polarized and called the Rayleigh wave and the two other, higher in
energy, are polarized dominantly longitudinally (e(Q, x = 0, s)||Q) and
transversaly (e(Q,x = 0,s) L Q) and are called the longitudinal res-
onance and the shear horizontal mode. k = 0 refers to the topmost
(surface) Xe(111) crystal plane. The polarization vectors which result
from this calculation are summarized in figure 4.5. In the topmost
panel of this figure we plot the dispersions of the three surface modes
and compare them with the experimental data. In the remaining three
panels we plot the quantities related to the phonon density of states,
namely

& = > 1e(Qr=0,s) 2| exp(—(w — w(Q,5)"/w)

3 e |:Q(|)£ DA (- w(@, ) )

‘e(Q: k=0, 8) ) (Q X Z0)|2
2 %

€L

exp(—(w — w(Q, 5))*/w),
(4.28)

Esm =

where w  0.19 meV.

The actual calculations are always carried out with a finite number
of slabs (otherwise the dynamical matrix would be of infinite dimen-
sion). One hopes to grasp the properties of a semi-infinite crystal by
describing it by a finite number of slabs. The problem of obtaining the
derivatives of the potential energy with respect to the motion of crystal
sites (equations (4.4),(4.20)) has not been solved in this section. It will
be solved in the next section.

4.4 Force constants and the
terminology used in the slab
lattice dynamical calculations

It is usually assumed in the lattice dynamical slab calculations that
the change of the potential energy of a semi-infinite crystal as a result
of the displacement of a particular lattice site can be obtained by con-
sidering only the local pair (site-site) interactions. Thus, instead of the
second derivative of the total potential energy in (4.4), one calculates
the second derivative of the sum of the pair potentials with respect to
the coordinates actually displaced. The sum can be extended only to
nearest neighbors or to second nearest neighbors or even to more distant



CHAPTER 4. NORMAL MODES AND PHONONS...

hw [MmeV]

hw [MmeV]

r

K

5- T T T T T L T T
4-®6§@% GO?Q%'QQ)- -Of';;@a%.é;o. '?.D D o....g-z.b@gg g o0
3. - Iy o % §O 6
."Q d/ Z 2o \SH .A'A%)da
2{ ¢ H° 3. %
s/ :
o / 6.00 1
1- - { 0SS -
) | Il oso -
; | o8 -
0 I I I I I | I B 050 -
5 J o7 -
| Moo -
Z 065 -
4 1 Bl 060 —
{ 055 -
3] | I o050 -
| o045 -
2] M
14
0 f f f f f f f
5
4_ L "’A ‘ '
3- Q—
2- M_
K
14
0 | | | | | | |
'l SH
4 /
3] 4 ;
2- .
14
0 | 1 | | |
00 03 06 09 Q[1/A] 06 -03 00

040 -
035 -
030 -
025 -
020 -
015 —
0.10 -
0.05 —-
0.00 -

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
045
0.40
035
0.30
025
020
0.15
0.10
0.05

41

Figure 4.5: A specific representation of the polarization vectors at the
Xe atom in the topmost Xe(111) crystal plane
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neighbors. This procedure can be expected to work fine if the effective
interactions have a range which is short enough (one cannot expect
this approximation to hold if the sites interact via e.g. bare Coulomb
forces). One usually connects with ”springs” a particular site with its
nearest and possibly second nearest neighbors (although much more
neighbors can be considered, see e.g. [47, 36]) while displacements of
other sites do not influence the particular site chosen. The different
"springs” have different stiffnesses or, more commonly, force constants.
Assuming that the pair interactions are spherically symmetric (i.e. de-
pend only on the relative distance between the sites), it is easy to show
that

0%V, (ry —r5)alr, —15)s  O?V
Ouy (1)0up(s) - v, —ry|? dlr, — ry)?
1 oV {5 B (r, —ry)a(r, — rs)ﬂ}
lr, —rg| Olr, — 1y P v, —rg|?
a,f = =,y z, (4.29)

where the indices r and s stand for any two sites with the radius vectors
r, and r, and V,; is the pair interaction potential between sites r and
s. (r, —ry)a is « (x,y, z) component of relative radius vector r, — r;.
If we chose relative z-axis to point from one site to another and denote
|r, — ry| = 7.5, then the force constants in equation (4.29) look rather
simple,

B _ _ a2V"S _ 82‘/;"5 (/rrs)
e O, (1)0uy(s) N or2,
2 2
O{TS — a ‘/’I"S — a ‘/’I"S _ iav}s(rrs),(élgo)

_8uy(r)8uy(s) Uy (r)Ouy(s)  Trs Oy

where (., denotes the force constant which corresponds to displace-
ments of r and s sites along the line joining them and «,.; denotes the
force constant which corresponds to the displacements of r and s sites
perpendicular to the line joining them. ., and «,4 are called the ra-
dial force constant and the tangential force constant, respectively. One
could assume that the pair potential, V,, is not spherically symmetric
to account for inhomogeneities of the electron gas which would yield
additional, angular force constant(s) [48].

To successfully model the experimentally determined dispersion re-
lations, it is sometimes necessary [47, 48] to assume that the force
constants are not everywhere the same. The standard procedure is to
allow the force constants for the atoms close to the surface to differ from
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the corresponding values in the bulk. Since the force constants at the
surface, needed to reproduce the experimental findings are generally
smaller than the force constants in the bulk, this ”effect” is called the
softening of the force constants. This effect can probably be related to
the electronic degrees of freedom which can be included only approx-
imately into the lattice-dynamical-force-constants-scheme and to the
neglect of the three-body and higher many-body interaction [35, 37, 47].

It is an experimentally established fact that the normal distances
between the slabs are not the same throughout the sample. The signifi-
cant change of the normal distances appears again close to the topmost
slab (surface). The normal distances between the slabs can be either
larger or smaller than the distance between the two neighboring slabs
deep in the bulk of the sample. This effect is called the intralayer re-
lazation and can be in principle included into a slab dynamics scheme
[46, 48].

4.5 Quantization of normal modes

The physics presented so far has been completely classical. We have
solved coupled Newton’s equations of motion by decoupling them via
introduction of new coordinates (normal coordinates). When we turn
to quantum mechanical description of the problem, we do not expect a
change in the eigenfrequencies and eigenvectors (polarization vectors).
This can be made at least plausible by examining the time dependence
of a classical and quantum particle in a parabolic potential. Both parti-
cles will have the same characteristic time scale 1/w - the classical par-
ticle in the time evolution of its displacement, wqs5(t) = u(0) - cos(wt)
and the quantum particle in the time evolution of its wave function,
U puantum (t) = ¥(0) - e7**. Since the problem of vibration of crystals
has been shown to be equivalent to the problem of N independent
harmonic oscillators (in the lowest approximation) we can expect the
same conclusion to hold here, i.e. we can expect the normal modes to
be the same in quantum and classical treatments of the problem. How-
ever, one thing surely changes: the occupation of the levels of harmonic
oscillator as a function of temperature. Quantum and classical oscilla-
tors will follow Planck’s (Bose-Einstein) and Boltzman’s distributions,
respectively.

We can explicitly introduce the quantization of normal modes in the
same way as it was introduced for a single harmonic oscillator. This
can be done by representing the hamiltonian of the problem in terms
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of creation and destruction operators, a' and a, respectively. A more
detailed description of this procedure can be found in references [44, 8.
The quantization of displacements essentially fixes the phonon ampli-
tude. The freedom of choosing the phonon amplitude is represented by
the arbitrary constant ug in equation (4.21). The space coordinate z
for 1D oscillator with characteristic frequency w and mass M can be

written as [8]
h
=/ f+a). 4.31
z 2Mw(a +a) (4.31)

We can apply this to the normal, harmonic oscillator coordinates uq in
(4.21) and quantize independently each mode characterized by its wave
vector q (or Q) and branch s. This yields ® [11, 44, 49]

h

=/—— (a} as). 4.32
Yaa.s 2M,w(q, s)(aq’3+a as) (4.32)

The operators af, a satisfy the usual boson commutation relations:
[a'q,S’ a’L’yS]f = 6q7q’55asl (433)

[aq.s, Oq 5] = [aL,s, azl,ys], = 0. (4.34)

The hamiltonian of the problem can now be represented in terms of the
creation and annihilation (destruction) operators as

1
H=> hw(q,s) {aL,Saq,s + 5} . (4.35)
Qs

The displacement in the direct space can be written as

7
u(p,a) = 2M,Nw(q, 5)

q,s

e(q, a, s)(aqs + alq,)e ™. (4.36)

The Bose-Einstein statistics of the excitations (phonons) is now con-
tainted in the commutation relations (4.33) and (4.34). The wave func-
tion of the system with n(q, s) phonons in state (q, s) and no phonons
in other states can be written as:

1
_ iy
| 0,0,....,n(q,s),...,0) = m(aq,s) | 0,0,...,0,...,0). (4.37)

81t is sometimes convenient to associate 1/v/N factor from the Fourier series in
equation (4.21) with amplitude uq, and redefine the series.
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There can be arbitrary number of phonons in each eigenstate (q, s) of
the system since phonons are boson quasiparticles. The result of action
of af, ,, and ag, s, operators on some state with ny; phonons in state
(a1, $1), m12 phonons in state (qi, S2), g phonons in state (qq, sp) etc.

is given by the following relations [8, 11, 44]:

CLLG’Sb|7’L11, nlg...ngl...nab...) = VNg + 1|n11, N19...M21-..Ngp + ]_>

Can,sb|n11,n12...n21...nab...> = \/nab\nn,nlg...ngl...nab—1...)
(4.38)

Here, the vectors |ni1, n1g...191...1gp...) completely specify the quantum
state of the crystal. By using equations (4.38), it is easy to show that

(-cgpo]al, 5 Qqusp |- Tabe) = Nap
(---Nap---|Qqy 5, 0qq,sp |---Mab--) = 0
<---”ab---‘aga,sb“2a,sb|---"ab---> = 0. (4.39)

This is why a'a combination of operators is called the number operator.
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In this chapter we shall briefly review the experimental aspects of
atom-surface scattering. Hence, it is not our intention to give a compre-
hensive survey of the experiments in the area of atom-surface scattering,
but rather to point out what the experimentalists can measure and how
they measure it.

The atoms used as projectiles are in most cases He (helium) atoms.
The atomic beam of helium is formed by an irreversible adiabatic ex-
pansion of a high pressure gas (= 400 bar) contained in the stagnation
(or source) chamber through a cylindrical aperture (nozzle) with a di-
ameter of ~ 10um. This process produces a beam of He atoms with
a very small spread in energies, with the mean energy depending on
the source temperature. The temperature of the source can be varied
continuously, usually in a range from 30 K to 700 K. This corresponds
to beam energies in the range of 5 meV to 140 meV . The beam then
passes through a conical skimmer and several (&~ 3) vacuum chambers,
one of which contains the rotating disc chopper for time-of-flight (TOF)
measurements. Thus the beam is chopped before entering the ultrahigh
vacuum (UHV) target chamber which houses the target (sample) and
additional equipment needed for preparation and characterization of
the sample surface (sputter gun, Auger spectrometer, LEED etc.). The
scattered atoms are detected by a mass spectrometer which is located
at = 1.5 m from the target at a fixed angle 05p ~ 90° with respect to
the line joining the source and the target. The sample is mounted on a
manipulator enabling x, y and z translations as well as rotations about
three axes. The target holder is provided with an electron bombard-
ment heater and a liquid Ny or He cooling arrangement which enables
the variation of the sample temperatures in the interval 50 K- 1200 K.

The detector consists of an electron bombardment ionizer followed
by the magnetic sector field mass analyzer. In addition to the three dif-
ferential pumping stages situated between the source and target cham-
ber, more (&~ 4) pumping stages are located between the target chamber
and the detector chamber. A relative resolution of AE/E = 2% can be
achieved for energies (E) of He atoms up to 60 meV. A more detailed
description of individual parts of the experimental setup follows.

'Energy of He atoms produced by an irreversible adiabatic expansion through
an aperture is very accurately given by Ey(He) = ngTsourC6 [50]. Here kp is the
Boltzman constant and T,yrce is the temperature of the source of He atoms.
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He-beam source

The He beam is formed by hydrodynamic expansion from the stag-
nation chamber into vacuum through a nozzle of 10 pym in diameter.
The pumping system ensures that the ratio of the stagnation pressure
inside the nozzle to the background pressure in the expansion chamber
is as high as 107, so that no shock structures occur in the expansion
region and a smooth transition from continuum to free-molecular flow
takes place a few mm downstream from the nozzle. In this jet expan-
sion, random kinetic energy is converted in the course of many collisions
into forward kinetic energy. The central part of the free He jet is se-
lected by the skimmer that acts as a collimator and, due to its shape,
deviates the non-passing atoms away from the beam path. The final
velocity distribution of atoms in the beam is thus sharply peaked with
a width Av/v as little as 0.01, which is in contrast with the broad
Maxwellian velocity distribution of atoms in the source.

Pumping system

The He apparatus is built with a multishell structure which is nec-
essary to differentially pump the various regions outside the central
sample chamber, without increasing largely the apparatus dimensions.
The pumping stages are extremely important since they reduce the
contamination of both the He beam and the sample. The pressures
down to 6 x 10~""mbar (in the detector chamber) can be achieved by
differential pumping [51, 95]. Usually 9 pumping stages are used (as in
the apparatus in Gottingen). This causes bulkiness of the experimental
setup.

Time-of-flight equipment

The chopping of the beam is needed for the determination of ener-
gies of scattered He atoms. Namely, the count rate of scattered particles
arriving at the detector is recorded as a function of the time delay from
the passage of chopper slit through the helium beam (the effective time
in which the chopper is letting the beam pass to the target chamber
can be varied between 5 and 110 us [95] - the chopper therefore pro-
duces pulses of He atoms whose length depends on the He beam energy
and the chopping time). Knowing the lengths of the apparatus and the
source temperature, one can calculate the energy exchanged in the colli-
sion of He-atom with the sample (this requires the scaling of z-axis from
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Figure 5.1: Figure displays the basic principle on which the time-of-
flight method is founded. For additional explanation see text.

the time of flight to the exchanged energy scale). The basic principle
of the time-of-flight technique is illustrated in figure 5.1. The time-of
flight spectrum obtained for He — Xe/C(111) (diamond) is shown in
figure 5.2 both for time-of flight z-axis (right panel) and exchanged en-
ergy z-axis (left panel). The equidistant discrete peaks in the spectrum
point to dominance of nondispersive vibrational modes (see Chapter 9).

Target chamber

Ion sputter gun, producing usually Ar ions, is used for the prepara-
tion of a crystallographically ordered sample [2]. Low energy electron
diffraction (LEED) is used (as in many areas of experimental surface
physics) for the determination of crystallographic order of the prepared
sample. Auger spectroscopy is used to determine the chemical character
of the contamination of the sample.

Relative angle of the sample with respect to the incident atomic
beam, #; can be changed by rotating the sample. It must be born in
mind that this also changes the angle between the beam atoms recorded
in the detector and the sample, 6, since the total angle Osp = 0; + 0y
is fixed. Therefore, the experiments always see the scattering spectra
for fixed incident and outgoing angle. Atoms which scatter in other
outgoing final angles are simply not seen in the experiments since they
can not reach the detector due to the geometry of experimental ar-
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Figure 5.2: A typical TOF spectrum for He — Xe/C(111) scattering
system taken along < 110 > direction of Xe superstructure. Left: Ex-
changed energy x-axis. Right: Time of flight z-axis. The measurements
were carried out by D. Fuhrmann, Ruhr-Universitat Bochum in 1997.

rangement.
Detector chamber

The ionization of the scattered He atoms is required simply for
recording the scattered beam flux. The observation of neutral parti-
cles (such as neutrons) requires a much higher degree of experimental
sophistication. First, the He beam is ionized by an electron beam inter-
cepting the beam path (efficiency a2 107°), then it is accelerated (~ 3.5
kV) through the quadrupole mass spectrometer. The quadrupole oper-
ates in radio frequency range; the passing beam is then mass selected
and focussed on the first plate of a dynode multiplier. A turbo pump
is mounted behind the multiplier in an off-axis position, in order to
pump away kinetically the neutral He beam. The signal is sent to a
pulse-former and then to a counter.

The figures which follow are schemes of the experimental setups
used by helium atom scattering groups at Ruhr Universitat Bochum
(Germany) and Rutgers University (NJ, USA).
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Figure 5.3: Somewhat more detailed scheme of the HAS-TOF experi-
mental setup at Ruhr Universitdt Bochum. Some parts of the equip-

ment discussed in text are marked.
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Figure 5.4: A scheme of the HAS-TOF experimental setup at Rutgers
University (NJ). Note the geometrical dimensions.
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o4 CHAPTER 6. DWBA

In the atom-surface scattering problems discussed in this thesis both
the dynamics of the projectile (e.g. He atom) and the vibrations of the
target must be treated quantum-mechanically owing to the scattering
conditions typical of this kind of experiments. In other words, the
appropriate theoretical description is the one pertaining to two coupled
quantum fields.

The Distorted Wave Born Approximation (DWBA) is a first order
perturbative approach frequently employed in atom-surface scattering
problems under the scattering conditions mentioned. It can appropri-
ately describe the collision processes in which only one phonon is ex-
cited. This dominantly happens when the energy and mass of the pro-
jectile atom are sufficiently low. The range of validity of the DWBA
additionally depends on the ”softness” of the target phonons. If the
phonons of the target have low frequency (energy), then it is easy to
excite them and even atoms with low energy can, on the average, ex-
cite more then one quantum (phonon). A more detailed accounts of the
DWBA and its use in atom-surface scattering are the subject of this
chapter.

6.1 Derivation of the DWBA

We can write the hamiltonian of the atom-target system as:

Rk

p?
H 2m + Vatom—target({ra rj}) + Warget({rj}) + ; ﬁ (61)

Here m is the mass of the projectile atom, k is its wave vector, r is its
radius vector, p; is the momentum of the j-th target atom and {r;} is
the set of radius vectors of the atoms in the target. Viom target 1S the
interaction potential between the projectile atom and the target and
Verystar 15 the potential energy of a particular configuration of target
atoms coordinates {r;}. The last two terms in the hamiltonian were
quantized in the previous chapter. We shall separate the potential
Vatom—targer in its static and dynamic components as in Chapter 3:

V;.tomftarget({r’ rj}) = ‘/static({ra 1‘2}) + denamic({uj}a {I‘g}) (62)

We are now going to find the eigenstates of the hamiltonian (6.1) with-
out the dynamic part of the interaction Vyynamic in equation (6.2). The
idea is to treat this latter part as perturbation to the atom-target sys-
tem interacting mutually only via static component of Viiom—targer in-
teraction. The afore mentioned eigenstates can be written as a direct
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product of the projectile and crystal states:

Vi (n(Q.9)} = Cr. k(1) @ {n(Q, 5)})- (6.3)

Here k, is the component of the projectile wave vector perpendicular
to the target surface and K is a projection of the projectile wave vector
k onto the target surface. The state |{n(Q, s)}) has the same meaning
as in equation (4.38). The projectile wave function { was written in
coordinate space. If we disregard the corrugation of the potential Vg,
we can write for (x, x(r) (which is called the distorted wave):

1

Ckz,K (I') = \/L%vT

Here R is the projection of r onto the target surface, and Lg is the
dimension of the square box used for normalization of plane waves
e®R in the surface plane. These are a free-particle solutions since
the potential in the directions parallel to the surface was assumed to
be constant for a fixed z coordinate. The wave function v, (z) is box-
normalized with respect to quantizing box dimension in z direction, L,.
We can find the dependence of v, on z by solving the 1D Schrodinger
equation:

Uy, (2)eER (6.4)

n? 02 h2k?
o g Vo) v (2) = ) = b (). (69)
z 2m
Here V; is the laterally averaged static potential as in Chapter 3 and
e(k,) is the projectile energy ”in z-direction” i.e. e(k,) = ¢; cos*(6;),
where ¢; is the projectile total incident energy. The wave functions
Y, (2) are called distorted waves since in principle they are plane waves
distorted by the presence of a static component of the atom-surface
potential. We shall further write 1, instead of 5, knowning that the
quantum number which uniquely specifies the wave function ¢(z) is the
projectile’s wave vector in z-direction.

The quantum mechanical state-to-state transition rate characteris-
tic of a scattering event is given by

2
wfz- = % ‘ Tfi ‘2 5(Ef — EZ), (66)

where E; and Ey are total energies of the system consisting of the pro-
jectile atom and the crystal prior and after the collision, respectively,
and T; is the transition matrix element. This is the scattering counter-
part of the standard ”transition probability per unit time” expression
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explained in textbooks on quantum mechanics [8, 11]. The index i (ini-
tial) stands for the initial wave vector k; of the projectile atom and for
the initial occupation numbers n;(Q, s) of the normal modes (phonons)
of the target, and similarly for index f (final). T}; contains the contri-
butions of all the scattering processes possible for a particular set of the
atom-target collision parameters (initial energy, angle, temperature ...),
therefore also the processes where more than one phonons are excited
(multiphonon processes). We are interested here only in the transitions
where the occupation number of a particular phonon mode increases
or decreases by 1, i.e. ny(Q,s) = n;(Q,s) & 1. These are called single
phonon or one phonon processes.

The next step is to represent the dynamic component of the poten-
tial in (6.2) by exploiting the two dimensional periodicity of the target.
Equation (3.14) can now be written in the slab-geometry language in-
troduced in Chapter 4 as

V(r,{w;}) = Viatic(r) = d_u(Ry, &) - Voo(r — R, — 1)

I,k

= V:static + V;iynamic (67)

Here r, is the radius vector pointing from the point chosen as the
origin for projectile radius vector r to the point chosen as the origin
for R; vectors in the particular slab x (r; = R; + ry, see figure 6.1).
Pairwise summation procedure is again used in (6.7). The Distorted
Wave Born Approximation consists in replacing T; with Vdj;namic. This
is analogous to first order perturbation treatment for stationary discrete
states [8, 11]. Here

Vdj;inamic = <f|denamiC({u(Rl, K)}, {r?})|1,>
= - Z((Cf|vrv(r - Rl - rn)‘Cz>

[

x{ns(Q; 8)}Hu(Ry, £) [{n:(Q; 5)}))- (6.8)

The displacement coordinate u(Ry, k) can be expressed via (Q, k) co-
ordinates as in equation (4.21). When quantized, the coordinates uq
contain only one creation and one annihilation operator. Therefore, the
phonon part of the matrix element represented by the last line in (6.8)
will be different from zero only if there exists a wave vector Q, and a
branch s, for which n;(Qq, sp) = 1:(Quq, sp) £ 1 (see equation (4.38)).
Using equations (4.32) and (4.21) it is possible to write the phonon
part of the matrix element (for absorption of one phonon) in equation



CHAPTER 6. DWBA 57

Figure 6.1: The notation adopted in this chapter. Dashed lines rep-
resent r, vectors for deeper slabs x. Note that vector r. does not
necessarily lie in the plane of paper, depending on a particular slab «.

(6.8) as
({..n:(Qq, sp) — 1...}Ju(Ry, k) [{..-.1:(Quq, $p)... }) =

hni(Qaa Sb) iQa Ry
J 2M Nyp |w(Qa, Sb)|e e(Qu, K, 5b)- (6.9)

Initially the crystal is in thermal equilibrium at temperature 75 and
the average value of n;(Qq, sp) is (n;(Qq, sp)) = n(|w(Qa, sp)|) Where
n(w) is the Bose-Einstein distribution:

1
eXp{kZ‘%s} - 1.

Here kg is the Boltzmann constant. Now we can write for the tran-
sition rate for all possible one phonon absorption processes, thermally
averaged over initial crystal states

n(w) = (6.10)

L hn(|w(Q, 5)|) 126(er — € —
Wy = f% 2MN2D|w(Q,S)||MfZ| e mam iAQah G4

The summation over Q and s now collects all possible one phonon
processes which conserve energy. Here €’s are the projectile energies
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and
My = [ drese) {IZ[Fz,n(r) e(Q,r, 5)]eiq.m} G (6.12)

is the remaining part of the matrix element pertaining to the projectile
atom. Here

F.(r) =—-V,u(r— R, —ryg). (6.13)
When we repeat the same procedure for one-phonon emission pro-
cesses we obtain again equation (6.11) with n(|w(Q,s)|) replaced by
n(Jw(Q,s)|) +1 (since the phonon is created now - see equation (4.38))
and —h|w(Q, s)| replaced by +h|w(Q,s)| in the argument of the en-
ergy conserving d-function. If we let w(Q, s) have either sign (— and +
signs representing emission and absorbtion, respectively) we can write
the thermally averaged transition rate for all one-phonon processes as

W = MM-Q O(er — e — hw(Q, s 6.14
= | Tty MAl (e - e~ ho@, ), (614

where we have used
n(|lw]) +1 = —n(—|wl). (6.15)

We represent ¢ functions as in equation (6.4) i.e., we neglect the cor-
rugation of V.. component of the interaction potential. For My; we
have now:

1 : )
M = S [deito) { [ e resomemon
2HS Lk
X Fi.(r)-e(Q,x, s)eiQ'Rl} Yi(2)
1 * (K —K;)-(R—
N _m/dzq/’f(z)lﬁi(z)/fl%%e (K;—Ki)-(R—Ry)
X Fl,l‘”v(R - Rl - Rn + (Z - ZH)Z()) . e(Q’ K, g)ei(Ki_Kf+Q)'Rl
1 * — _K.)-(R—
= —m/dzwf(z)wi(z)lz/dZ(R— R))e "Ks K)-(R-R))

x Fi (R—R;, — Ry + (2 — 24)20) - €(Q, &, 5)€i(Ki_Kf+Q)'Rl
(6.16)

Note now that the part which must remain within the integral over
d*(R — R;) does not depend on index /. Summation over [ has to be
performed for the remaining part which yields
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Y ®EAQDR = Ny 3 6k, —ki—q,G- (6.17)
G

Using the above identity, we can explicitly write out the part we have
to integrate over d?(R — R;) = d*R'. We call this part I:

J = /dQRlefi(Q-FG)-RIVrIU(RI _ R,g + (Z, _ Zn)ZO)

— /d2 RI —z (Q+G)- (R,_RN)VI-’/U(R, _ Rn + (Z, _ Zn)ZO)
% —i(Q+G) Re

, n, 0 0
= / *R'eT WO (S RG + 2- 2o (R + (2 = 2)20)

% ¢ (Q+G)R.

~i(Q+G) Rm{ (Q+G)’8z }/dQR” (R" + (2 — z,,)zg)

w ¢~ HQ+G)R/
_ ¢ iUQ+G)Rx { (Q+ G), 88 }UQ+G(2 — %) (6.18)

The fourth equation in the equation array above is obtained by par-
tial integration over d*?R". Rj is the unit vector in R” direction and

vQ+G(2— %) is a two dimensional Fourier transform of v(R+ (2 —2)zo)
defined as

vara(z / 2Re QO Ry(R 4 (2 — 2,)z0). (6.19)

Note that vg=o,g=0(z — 2x)/A¢, where A, is the area of the surface unit
cell, yields the static component of the interaction of the projectile
atom with all the sites (atoms) in the x’th slab of the target crystal.

The precise dependence of vg on wave vector QQ can be obtained by
performing the integration in equation (6.19). However, this requires
additional numerical calculations. In the case when V;(z) has the Morse
functional dependence on z as in equation (3.15), it has proven fruitfull
[62, 53, 7] (and quite accurate [40]) to approximate the Q dependence
of vq as

Q? Q*
vQ(2 — 2x) = Vrep,qeo(2 — 25)€ 298 — Vg qeo(z — 2)e % (6.20)

Q.= \/? = \/g (6.21)

where
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Here z; is the classical turning point of the projectile atom obtained
from Vp(2;) = ¢; cos®§; and 3 is the inverse range of the repulsive com-
ponent of the total static interaction potential. The terms vepq=o(z —
) and Vg q—o(2 — %) are the repulsive and attractive parts of the po-
tential vq_o(2—2x), Viz. VQ=0(2—2x) = Vrep,@=0(2—2x) —Vatt,q—0 (2 — 2x)
1. Q. is usually called the cut-off wave vector (sometimes, the Armand
factor [6]) and is typically 1 A= almost irrespective of the actual scat-
tering system studied and of the projectile incident energy [7].
Inserting (6.18) and (6.17) into equation (6.16) for My; we have

My = 2 0k, K.Qre

¢ k,G

/m% e(Q,k,5) - Fo(Q+ G, 2)eu(2),  (6.22)

LA

where A, = L%/N,p and

F.(Q+G,z2)=— {Z(Q +G), ZO%} vgra(z — 2,)e QTG (6.23)

Note here that (Q+ G)-R, = (Q+ G) - r,; since (Q+ G)-zy = 0. By
inspecting the matrix elements of the potential (needed for the modes
with the polarization vectors lying in the surface plane) and of the
derivative of the potential (needed for z-polarized modes %) we arrive
at the conclusion that the coupling of the projectile to the z-polarized
modes is generally much stronger than to the modes polarized in the
surface plane [54, 55].

When we divide the transition rate in equation (6.11) with the inci-
dent projectile flux ? fik; cos §;/mL, perpendicular to the surface (here
k; is the length of the three dimensional wave vector of the projectile
and 6; is its incident angle with respect to the surface normal), we ob-
tain a quantity usually called state-to-state reflection coefficient, Ry;:

mm 3 n(w(Q,s))
LzAgthDMkz COS (9, Q.G,s UJ(Q, S)

X Ok, Ki,Q+G5( € — € — hw(Q, s))
|Z (Q, %,5) - Fu(ky, ki) [* (6.24)

Ry = R(kp ki) =

X

1See last section of this chapter

2This follows from the inspection of scalar product e(Q, &, s) - F.(Q + G, 2).

3This effectively means that we calculate everything with respect to one incident
atom in the scattering system.
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This quantity is averaged over initial phonon states and summed over
all one-phonon processes. Here

Fu(ky ki) = [0/ (2)Fa(Q+ G, 2)ti(2)dz (6.25)

If we have information on the polarization vectors e(Q, k,s) and in-
formation on the two-body potential, v, then it is relatively easy to
calculate the reflection coefficient from equation (6.24). We only have
to pay attention to the energy conserving d-function and the lateral
wave vector conserving Kronecker symbol. For typical in-the-sagittal-
plane TOF geometry (see Chapter 5) it can easily be shown [6, 47| that
processes which satisfy

inb; + |K; — K| /k;)?
ef—ei:ei{(sme—i_‘,g /k:) —1}, (6.26)
sin” 0¢

conserve both energy and momentum and they will also be seen in
the experiment. Other processes either do not satisfy the conservation
of momentum or energy or can not be recorded by typical HAS-TOF
experimental equipment, because typical TOF experiment can mea-
sure only in-the-sagittal-plane scattering processes i.e. processes where
K/||K; and only a fraction of these processes in which the scattered
atom ends up in the final angle 6;. Equation (6.26) is usually called
the scan curve equation. One point still remains to be clarified in order
to compare the theoretical, DWBA with experimental results (TOF
spectra). TOF experiments measure the number of particles of partic-
ular energy scattered into a particular region of space (or, equivalently,
the phase space). Therefore, the detector gathers all the scattered
atoms which after the scattering event move in a direction defined and
restricted by the experimental equipment. The scattered beam is colli-
mated 4-5 times before detection and from figure 5.4 we can conclude
that all the atoms which scatter into a final angle 0y = 9;1 + 0.1° are
in fact detected. Here, 953 is the nominal final angle fixed in a typical
scattering experiment. The same holds for polar angle, ¢; = 0° £ 0.1°,
which defines the projectile final direction projected onto the surface
plane, assuming that the collimators are of rectangular shape. The
state-to-state reflection coefficient clearly cannot be directly compared
with the experimental TOF spectrum. It is much more convenient to
obtain the probability for processes in which the projectile atom ex-
changes with the target fized amount of energy, Ae = €; — ¢; and fized
amount of lateral wave vector, AK = Ky — K. This quantity we call
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energy and lateral momentum resolved state-to-state reflection coeffi-
cient and denote by R*. For Ri®® we can write

res
Rki - Z Rfi
ke, p)

_ mm (w(Q,s))
k(;f) L, A2 Nyp Mk, cos 6; Q’ZG’S w(Q,s)
X Ok, k;,Qrad(€; — €& — hw(Q, s))

X |Z (Q, &, s) - (kf,k,-)|2
™ Z n(w(Q, s))

kg) L,A2hNyp Mk; cos 6); GG w(Q, s)
ml,
X 5Kf*Kz-,Q+G _27rh2k(z P 5k(z,f)vkz(i)
X | Ze(Q, K, §) - F,e(kf,k,-)|2

2A2h Nop Mk, iyk(z, ) Q,G,s W(Qas)
X OK,;—K;,Q+GOk(, ;) k. (<)

X |Ze(Qa’{a S) 'Fn(kfaki)|2a (6'27)

where k(.5 (k() is the final (initial) projectile’s wave vector in z-
direction. In the derivation above, we have transformed the é-function
of energy into the Kronecker symbol in terms of wave vectors as [56]:

6(er — €& —hw(Q, 5)) = %%J),kz&)@(kg(iy). (6.28)
Here,
) = M {hQKZ- (Q+G) r(Q+G)’
h M oM
+ et + hw(Q )} (6.29)
oM i '

and the sign in front of fiw depends whether the phonon is emitted or
absorbed . It can be seen that Ri% is a dimensionless quantity. We are

4Tt is assumed here that the projectile’s final state is not a bound state of the
interaction potential, although a similar relation can also be derived for that case
[57]. The Heaviside function, ©, in equation (6.28) selects only those final projectile
states which are mot the bound states of the interaction potential.
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however interested in energy and lateral momentum resolved spectrum
of scattered atoms, N(Ae, AK), which only after integration over Ae
and AK yields a dimensionless quantity (number of scattered atoms)
and which itself therefore has the dimension of length?/energy. In the
one-phonon approximation for the scattering spectrum Nf;‘,“il_'(Ae, AK)
we can write [56]

. m2 n(w(Q,s))
Nznel. A AK = ’
1ph. ( & ) 2A277,3N2DMk(z,i)k(z,f) Q,ZG,S w(Q’ S)
X (SKf—KiaQ'i'Gdk(z,f)’kz(i)

x| Ze(Q, k,s) - Fo(ky, k;)|?
X 0(Ae— (ef — €))0(AK — Q), (6.30)

where the J-functions are used to project out the part of scattered atoms
which transfer energy Ae and lateral momentum AK in a course of a
collision with the surface 5.

Now we can proceed and calculate the quantity which we can di-
rectly compare with TOF spectrum either in the single or even more
generally in the multiphonon regime of scattering. In a TOF mea-
surement, the spectra will be recorded in a small element 2A6; in the
direction of f; with respect to surface normal. Hence, for the TOF
spectrum, Nror(€, 0f), we may write

0?—|—A9f
NTOF(AG, ef) :/

0,-0 ; //dK(maf)dK(yaf)N(Aea AK)fzns(kf)
(6.31)
Function fi,s(ky) is the instrumental function since there is no reason
to a priori assume that the detection of the scattered atoms is indepen-
dent of their final state. In the previous chapter we have seen that the
atoms which scatter from the target must be ionized before the detec-
tion. The ionization probability, however, depends linearly on the time
spent by the scattered atom in the ionization chamber i.e. it depends
linearly on inverse final velocity, vy of the scattered atom. Therefore,

for instrumental function, f;,; we can write

ci,
vr

0_
b Af

fins(kf) = (K(y’f))> (632)

5This, somewhat lengthy, transition from the state-to-state reflection coefficient
to the scattering spectrum can be completely avoided in the scattering spectrum
approach to the atom-surface scattering problem which will be introduced in Chapter
7 and additionally explained in Chapter 8.
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where ('} is a constant containing the information about the flux of
electrons used for ionization and the length of the ionization chamber.
The é-function in K, ;) represents the action of the collimators and ef-
fectively selects only those processes in which the scattered atom moves
in the sagittal scattering plane. Since for fixed initial and total angle
of scattering (0 + 0; = 0sp) we have dK(, 5) = ky(es) cosfy, we can
write for the experimental TOF spectrum

Nror(e,07) = 02% cos(0;)N (e, AK(6y)), (6.33)

where the proportionality factor, Cy is a constant in each TOF measure-
ment. The equation above specifies the quantity one should compare
with the experimental TOF spectrum.

The generalization of the derivation of the DWBA to the case of
corrugated surface is straightforward and can be found in reference [6].

When the scan curve intersects some phonon dispersion branch, a
discrete peak in the spectrum occurs (see figure 6.2). This is why the
scattering in the low incident energy regime (where the DWBA should
work well) is used for experimental determination of the dispersion re-
lations [1]. The multiphonon processes tend to smear the contributions
of particular phonon branches to the TOF spectra (see section 9.7),
especially when the dispersions of phonon branches are not ”flat” i.e.
when there is a definitive dependence of frequency of the mode on its
wave vector.

We can now proceed to calculate some theoretical ”spectra” and
directly compare them with the experimental TOF spectra. Figure
6.2 displays the DWBA calculation for He — Xe(111) scattering along
I'-K direction of the surface (Xe) Brillouin zone compared with the ex-
perimental data. The potential and the dynamical matrix parameters
used in this calculation can be found in section 9.5. The spectrum
is dominated by the peaks corresponding to one phonon emission and
absorption of the Rayleigh wave phonon of the Xe(111) surface. The
full line was calculated by summing up the contributions to the spec-
trum arising from the coupling of He to first and second slabs of Xe
atoms, while the dashed line represents the DWBA calculation with
the coupling only to the topmost layer of Xe atoms included.

This calculation suggests that the helium atom scattering technique
is not only statically surface sensitive (i.e. surface sensitive with respect
to diffraction), but also dynamically surface sensitive (i.e. with respect
to the inelastic events), since the contribution of the vibrations localized
in the topmost layer of atoms to the scattering spectrum is by far the
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Figure 6.2: DWBA calculation for He — Xe(111). Thin full line: Ex-
perimental data. Full line: DWBA spectrum for k=0,1. Dashed line:
DWBA spectrum for k=0. Data taken by A. Graham in 1997.

dominant one, as demonstrated here for the He — Xe(111) scattering
system (see also figure 6.3).

Although the incident He energy during the aquisition of the data
displayed in figure 6.2 is quite low (5.7 meV), the influence of multi-
phonon processes can be seen as a broad gaussian-like background not
accounted for in the DWBA 9.

Note also that the DWBA does not reproduce the peak observed
at zero energy transfer (the so called no-loss peak). This peak is not
due to any kind of phononic excitation, but is a consequence of diffuse
elastic scattering from defects not accounted for by the form of DWBA
presented here.

Figure 6.3 displays a comparison between calculated (DWBA) and
measured TOF spectra for the same system (He — Xe(111)). The
projectile incident energy is 10.43 meV and the sample temperature is
50 K. The incident and final angles are the same as in figure 6.2. The
inset shows relative contributions of the vibrations of the second slab of
atoms to the DWBA TOF spectrum. Note that this contribution is not

6Rayleigh wave mode of Xe(111) has a maximum frequency of 2.31 meV along
the I'-K direction, i.e. it is very ”soft” and it is easy to multiply excite it even with
low incident energy He atoms.
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Figure 6.3: DWBA calculation for He — Xe(111). Thin full line: Ex-
perimental data. Full line: DWBA spectrum for k=0,1. Dashed line:
DWBA spectrum for k=0. Inset: Relative contribution of k=1 slab of
Xe atoms. Data taken by A. Graham in 1997.

necessarily positive owing to phase factor exp(i(Q+G)-r,) in equation
(6.23). The relative contribution of the second slab of Xe atoms to the
DWBA spectrum does not exceed 5 % for the scattering parameters
studied, irrespective of the energy transfer.

Figure 6.4 displays the character of polarization vectors of the vi-
brational modes generated by the lattice dynamics calculation and used
to obtain the calculated DWBA TOF spectrum displayed in figure 6.3.
The absolute values of the polarization vector at the topmost Xe(111)
slab are displayed. Although the polarization vector is a function of
the lateral wave vector, Q, it can be represented as a function of the
exchanged energy (or the phonon frequency, in the DWBA) since the
scan curve imposes a unique relation between the wave vector Q = AK
and the exchanged energy, AE = w(Q).
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Figure 6.4: Polarizations of the modes used to calculate DWBA TOF
spectrum in Fig 6.2. Upper panel: absolute value of the z-component
of polarization vector at k = 0. Lower panel: absolute value of the
longitudinal (L) component of polarization vector at x = 0.

6.2 Probability of elastic
scattering in the DWBA

If the atom-target scattering is dominated by the single-phonon
emission or absorption events, the DWBA will be an adequate ap-
proximation to the problem. We naturally ask about a measure which
will contain information on the character of scattering - whether it is
predominantly single-phonon or multiphonon. A good measure will
surely be the average number of phonons excited by the projectile atom.
The average number of phonons contained in the wave function of the
scattering system after the interaction has terminated can be found by
inspecting the matrix element (f'|>q aTQaQ|f1) at Ts = 0, where |f1)
is the wave function of the system calculated in the DWBA (see refer-
ences [8, 11] for the wave function in first order perturbation approach),
and 3 q;aq ,0qQ,s is the phonon number operator. This yields for the
average number of phonons in the final wave function,

Nph = Npho + Z Rfi, (634)
f#i

where n,y, o is the number of phonons in the initial wave function, before
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the scattering event started. Therefore, the average number of phonons
excited (i.e. created, at Ts = 0), 2W can be found as

2W =" Ry;. (6.35)
f#i

Note however that 2W in nothing but the probability of inelastic scat-
tering in the DWBA. Assuming that the DWBA is unitary (although
it is not, since the DWBA is equivalent to the first term in the Dyson
series, see section 8.1), we can write for the probability of elastic scat-
tering in the DWBA|

f#i

Here we have assumed that the probabilities of elastic and inelastic
scattering events sum up to unity which must hold if the unitary prop-
erty of the evolution operator of the system is preserved. This is not
the case for the DWBA, but we can expect that if 2IW << 1 the DWBA
probabilities will be approximately correct since the number of excited
phonons is small and the DWBA should work fine. Note also that for
2W > 1 equation (6.36) produces senseless results (negative probabil-
ity). Figure 6.5 displays the DWBA calculation of the elastic scattering
probability [19] compared with the experimental data [58] for Ne —
Cu(111). The scattering system is parametrized as in 9.2. The large
disagreement of the DWBA at low sample temperatures is probably due
to incoherent scattering of Ne atoms from the defects (disorder) present
in Cu(111) surface . Above =~ 120 K, DWBA gives negative probability
of the elastic scattering. For Ts = 10 K, 2W(DWBA) = 0.197 << 1.

The probability of elastic scattering obtained in the DWBA can be
used to normalize the DWBA scattering spectrum in equation (6.30).
We require that the whole spectrum (including both the elastic and
inelastic processes) integrates to unity. Thus normalized DWBA spec-
trum is given by the expression

Npermivh-(Ae, AK) = (1 —2W)5(Ae)d(AK)
+ 2WNH(Ae, AK), (6.37)

with Nineh(Ae, AK) given by equation (6.30). It can be seen that

/ d(Ae)d(AK)NE™ (A, AK) =1 —2W +2W =1.  (6.38)
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Figure 6.5: The magnitude of the elastic scattering probability calcu-
lated in the one phonon (DWBA) approximation for Ne — Cu(111)
scattering system. Full line: DWBA calculation. Squares: Experimen-
tal points.

6.3 Additional comments concerning
the application of the DWBA

Note that we have described the inelastic one phonon emission
(absorption) scattering events by using the delocalized wave functions
rather than the wave packets for the description of the projectile atom.
It was shown in the previous chapter that the projectile atoms travel
about 1 m from their point of injection into the evacuated space to the
point where they actually interact with the target. So, even if projectile
atoms were fairly localized when they were injected they would quickly
become quite delocalized (much before they hit the target). This is a
consequence of the spreading of the wave packet which happens even
if there is no interaction at all (see reference [8], page 63). It can be
shown that the width of the wave packet grows in time as

(Ap)*t2

m2

, (6.39)

where Az and Ap are initial uncertainties (at ¢ = 0, this corresponds to
the point of injection) in the position and momentum of the projectile
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atom, respectively. Assuming that the projectile atom is He with energy
of 10 meV, the time needed to reach the target equals to ~ 1.4 ms
(see figure 5.4). The typical uncertainty in the momentum is about
Ap/p ~ 0.01 (see Chapter 5) which yields Ap ~ 5-1072% kg m/s.
Assuming that AzAp = h/2, we find Az &~ 2 nm. So, even at the time
of injection (¢ = 0) the width of the wave packet is about 10 times
larger than the typical range of interaction potentials 7. The wave
packet spreads much more after 1.4 ms, so that the uncertainty in its
position is about 4 cm which is a macroscopic length! Therefore, the
projectile can safely be described by a completely delocalized, distorted
wave 8.

Note that for actual calculation we need some matrix elements. But,
the matrix elements we need are not the matrix elements

(d’f (1Q, 200/ 02) Vo (2) 1)

(see equation (6.5)) which we can find in the literature, but rather

(V7 (1Q, 200/0z)vq (7 — 2e) [4hi),

where vq(z — z,) is the projectile interaction with the slab k. The
choice of the Morse potential model for V; comes convenient again,
a little mathematical trick does the job here. The interaction of the
projectile atom with the topmost slab of atoms can be represented as
the interaction of the projectile with the slabs k = 0,1, ...00 minus the
interaction of the projectile with slabs Kk = 1, 2, ...00 - this is all in the
spirit of the approximation of pairwise summation of potentials. Those
two interactions are the same, only shifted with respect to each other
by a, where a is the normal distance between the slabs (i.e. crystal
planes). One can easily show by following this line of reasoning that

vgoo(z — 2) = AD|eTdCTO(1— e T )e T
— 2eTalETH)(1 - Td)em ] (6.40)
where D,d and z, are the Morse potential parameters of Vj(z). This
also gives a precise meaning to quantities vye, g=o0(2—2x) and vau,q=o(2—
2,;) introduced in equation (6.20):
Urep,QZO(Z - Zn) = AcDe_%(z_zo)(l - 6_7)6_7 (641)

"Note that the z-direction is of importance here.

80ne could consider a so called wave-train which is a convolution of the distorted
wave and e.g. gaussian function whose width represents the position uncertainty,
but this is clearly not needed here.
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and 1
Vatt,q=0(2 — 2x) = 24,De"aF)(1 — ¢ d)e d . (6.42)

This little trick can be done so easily only when V;(z) is some com-
bination of exponential functions of the coordinate z (as the Morse
potential is). Therefore, the matrix elements existing in the literature
[38, 39, 59] can be used with slight multiplicative modifications as in
equations above in order to account for the interactions with a slab,
and not the whole sample. Of course, the trick was made under the as-
sumption that nothing special happens at the surface of the sample i.e.
that the effective potentials in the topmost slab are the same as in all
other slabs of the sample. This is clearly a bad assumption for metallic
samples where it would be probably better to completely neglect the
projectile interaction with all slabs except for the topmost one.

The cut-off wave vector (). introduced in equation (6.21) can be
shown to be the same for all slabs x if we chose to represent V5(z) by
the Morse potential [52].
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The forced oscillator model is a nonperturbative approach of ap-
proximately solving the dynamics of atom-surface scattering. It is an
exact solution to the approximate hamiltonian of atom-surface scat-
tering. The hamiltonian is simplified by introducing a rather serious
approximation to the projectile (atom) dynamics. Namely, the projec-
tile is assumed to be recoilless, classical particle restricted to move on
a suitably predefined trajectory.

Before deriving the trajectory approximation for the atom-surface
scattering problem, we shall introduce some basic prerequisites, espe-
cially the formalism of the time dependent perturbation treatment.

7.1 Essentials of time dependent
perturbation approach

(In this section we shall set i = 1 except where it needs to be
explicitly written.)

Consider a quantum system which can be described by hamiltonian
H,. The time dependence of the wave function ¥g pertaining to this
hamiltonian is governed by the Schrodinger equation

0Ws(t)
T

The solution to equation (7.1) can be written as
U (t) = Up(t, to) Us(to) = e U0 4(1,). (7.2)

Here Uy(t, 1) is the evolution operator. A subscript S means that the
particular quantity (here, the wave function) is to be calculated in the
Schrodinger representation of quantum mechanics. Knowing the initial
conditions of the system (W¥g(#y)) and the evolution operator we can
predict the wave function of the system at any future instant. We
assume that the evolution operator, Uy(t, o), can be found without
difficulties. The basic aim is to solve a more complicated hamiltonian
H(t) = Hy + gVs(t), where V() is a perturbation to the system. The
constant ¢ is introduced here for convenience and will be set equal to
1 in the final results.

We now pass to the interaction picture with the interaction and
Schrodinger pictures coinciding at ¢ = 0 [8, 11, 44]. Then

Ug(t) = e oW (1),  Vi(t) = eHotVg(t)e Hot, (7.3)
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where the second identity holds for any operator which we want to ex-
press in the interaction picture. We shall further drop the subscripts
I and treat the quantities without subscripts in the interaction pic-
ture. It follows from the equations above that the time evolution of
the operators in the interaction picture is governed by the unperturbed
hamiltonian H. It is easy to show that

20 _ v wue), (7.4)

ot

i.e. the time evolution of the wave function in the interaction picture
is governed solely by the perturbation V'(¢) expressed also in the in-
teraction picture (this means that there is the part Hj of the total
hamiltonian already contained in V;(t) as in equation (7.3)). We define
the evolution operator in the interaction picture as

T(t) = Ut t)U(to). (7.5)

Inserting (7.5) in (7.4) we obtain the following differential equation
which must be satisfied by U(¢, %y):

i%U(t, o) = gV (Ut o). (7.6)

The initial condition for this equation is
U(to, to) - ]., (77)

since, from (7.5)
U (to) = Ulto, t0) ¥ (to)- (7.8)

When two time translations are applied consecutively the following
property holds:
Ul(tz, 1)U (1, t0) = U (t2, to)- (7.9)

For the special case ty = tj, this gives an expression for the inverse
operator
U to, t1) = Ulty, o). (7.10)

Finally,
Ut(ty,to) = U (t1, to) (7.11)

since Hj is hermitian. From the equation above we conclude that U is
a unitary operator which guarantees that the normalization of the state
vectors does not depend on time. We define the scattering matriz, S,
as

S=_ lim Ut t). (7.12)

t—o00,lp——00
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The scattering matrix evolves the scattering system from the initial,
noninteracting state (before collision) to the final, also noninteracting
state (after collision).

7.2 Derivation of the trajectory
approximation or the forced oscillator
model in atom-surface scattering

We shall closely follow the derivation of the DWBA from the previ-
ous chapter. All the notation in this section is the same as in Chapter
6. The dynamical interaction part of the hamiltonian can be written
as

denamic(r) - - Z u(Rla K) . Vr’l)(l‘ - Rl - rn)
Lk
= Z u(Ry, k) - Fi.(r), (7.13)
[

where r represents the coordinates of the projectile atom and F; .(r)
is given by equation (6.13). Expressing the displacement coordinate
u(Ry, k) as in equations (4.21) and (4.32), we obtain

h

namic = - -F K QR
Vanamsc(x) mzc;s 2MN2DW(Q,8)e(Q’K’ 5) - Fualrle
X (ahy, +a_qy)- (7.14)

We introduce a lateral Fourier transform of F; .(r) as

1

Fi(r) = (2m)2

/ LK RR-RIp (K ). (7.15)

where
F.(K,2) = / d?Re~ - R-R-ROp, (1), (7.16)

I

Substituting equation (7.15) into (7.14) and performing the summation
over index [ as in (6.17), we obtain

h

1
A_c ,ﬁ’(%,g 2MNypw(Q, s)

x QO RRI (L g g). (7.17)

FK,(Q + G'7 Z) ) e(Qa K, 8)

denamic (I') =
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We have transformed the Kronecker symbol from equation (6.17) into
a d-function according to

2
SkQic = (QLLQ)a(K —qQ-0q). (7.18)
S

Performing exactly the same procedure as in equation (6.18), for F, (Q+
G, z) we obtain

F.(Q+G,2) = {i(Q—l—G),%zo}vQJrg(z—zn), (7.19)

where vqig(z — 2) is given by equation (6.19). We rewrite the dy-
namical interaction potential for later convenience as

dena,mic(r) = Z WQ,s(r) (CLIQ,S + a—Q,s)a (720)
Q,s

where

1 h
Wault) = 53| sy @+ G2 e@ )

x  UQ+G)(R-Ry) (7.21)

The total hamiltonian of the system can be written as

2
H = p— + ‘/static(r)

2m

1
+ > hw(Q,s) {aTQ7saQ,s + 5}
Q,s

+ D Wa(r)(ah, + a-qy); (7.22)
Q,s

where Viaic(r) is the static part of the interaction potential as in equa-
tion (3.14). Note that the convention we have chosen for writing this
hamiltonian is a mixed one; we used a notation of second quantiza-
tion for representing the vibrations of the target, while the part of
the hamiltonian pertaining to the projectile was written in a ”classical
fashion”, i.e. in p and r coordinates which are not quantized. This
is exactly what suits us now, since we are going to make a trajectory
approrimation, i.e. we shall treat the projectile as a source of time-
dependent perturbation acting on the phonons of the target. We shall
classically solve the projectile part of the hamiltonian represented by
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the first two terms on the RHS of equation (7.22) (all target atoms are
fixed in their equilibrium positions). Neglecting the corrugation of the
static interaction potential in the directions parallel to the surface, we
have

r(t) = (R, 2) = (Vt, z4(t)), (7.23)

where ¢ is the time variable, V is the projectile velocity in the surface
plane and z.(t) is the projectile classical trajectory projected onto the
z-axis. Now we approximate the hamiltonian in (7.22) by

1
Hra = Y (@) {dhaqq+ 5} + X Waur(®)(ah, +a )
Qs Qs

1
= S mw(@5) {ahaas+ 5| + Y WaslB)ah, +a @)
Qs Q.s

= Hy+ Hi(t), (7.24)

where we have inserted the classical solution in equation (7.23) into
the dynamical interaction part of the hamiltonian and dropped out the
uncoupled part of the hamiltonian corresponding to the projectile (first
two terms on the RHS of equation (7.22) which we already solved in
a classical manner as in equation (7.23). The time dependent function
Wq.s(t) is given by

WQ,S (t

1 h
) = A_c % \/QMNQD(,L)(Q’ s) F.(Q+ G,za(t)) - e(Q; 5, 3)
% HQ+G)(Vt-Ry) (7.25)

The time dependent hamiltonian in equation (7.24) can be exactly
solved [12, 13, 60]. Clearly, the projectile appears in (7.24) as a time
dependent perturbation H;(t) acting on the target phonons described
by Hy and the quantum nature of the system is reflected only through
the wave function describing the phonons of the target. This explains
the name ”forced oscillator model”. It is obvious that if the scatter-
ing is very far from elastic, the hamiltonian in (7.24) can be expected
to produce wrong evolution of the target state vector, since the time
dependent force was obtained by assuming elastic collision. Strictly
speaking, the validity of the trajectory approximation can be proved
for weakly inelastic, quasiadiabatic scattering, although one can ex-
pect that qualitative conclusions obtained by the use of the trajectory
approximation remain valid also for strongly inelastic scattering [18].
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The phonon state vector in the interaction representation *

T (1)) = er "o I1°(2)) (7.26)
satisfies equation
ih I (1)) = Vi) T (1), (7.27)
where
Vi(t) = e%HOtHIe_%HOt

= Y Waq,(t)(ahy, @) +a_q e @I, (7.28)
Q,

The last line of the equation above was obtained by noting that the
operator

a_qs(t) = e%H"ta,Q,se_%HOt, (7.29)
satisfies equation

aa* as(t) -

ot =i [Hy,a_q.(1), (7.30)

and by using the boson commutation relations for a-operators as in
equations (4.33) and (4.34). The solution to equation (7.27) is given
by [13]

T’ (¢)) = exp (iZ@Q,s(t,t0)>

Qs

1 .
X  exp <_ﬁ Z(IQ,S(t’ tO)a—Q,S + IQ,s(t’ to)an,s)>

Q,s
x| (t)), (7.31)

where .
Iqs(t to) = / dt'Was(t')e @Y (7.32)
to

and

1 t ! t’ n ! n . ! n
Dt to) = = /t [ di" W (1) Wa.(t")sin (w(Q 9)(V' ~1")).
(7.33)

1T and S denote the interaction and Schrédinger representation, respectively, as
in the previous section.
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This can be checked by direct substitution of (7.31) into (7.27) 2. The
target state vector in the Schrodinger representation is therefore given
by

T(t,1)) = exp ——Hot)

X ( ! =Y (q,s(t,to)a—qs + Ig(t, to)aQs)>

= Upy (U, (1, o) exp (—ﬁﬂot(]) T(6)),  (7.34)

where .
Un (1) = exp (—%Hot) (7.35)

and

1
Uv, (£, t0) = exp <_£ S (Tqus(t to)a—q.s + It to)aTQ’s)) . (7.36)
Q,s

Since we are dealing with a scattering problem, we let ¢ — oo and
top — —o0, as in equation (7.12).

The energy and lateral momentum resolved spectrum of the outgoing
projectile atoms will be described by the function N(e, AK) giving
the intensity of atoms which have suffered a loss of energy ¢ and of
lateral momentum AK which are absorbed by the target phonon bath.
N(e, AK) is therefore defined as the probability that at time ¢t — oo
the target is found in any of the states [{ f}) of the free hamiltonian Hy
with a total energy E{s; = Ey+ ¢ and total momentum Qs = AK 3,
where Ej is the energy of the target at t; — —oo. Thus, in order to
find N (e, AK), we should project the final ({ — oco) wave function of
the target onto the |{f}) set of states choosing only those states [{f})
which differ from the initial target state in energy and momentum by
¢ and AK, respectively. Therefore, we have

. s 2
NEAK) = | lim ST 1))

{r}

2A general solution of equation (7.27) will be illustrated in the next chapter.
3The total phonon momentum of the target before the interaction has been
”switched on” was clearly zero.
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X 5(6 - (E{f} - EO))5(AK - Q{f}), (737)

where we have used d-functions to project out the states of interest.
Equation (7.37) can be also written as

1 o0 i .
NEAK) = | lim oo [ dreds [ @PReSKR
t—00,tg——00 (27rh)3 — 0 R
x  (II5(t, to)|e # (o BTe 2P RITIS (¢, 4,)),  (7.38)
where 7 and R are integration variables in time and two-dimensional
space domains, respectively. P is the operator of the total momentum
of the phonon bath, i.e.

PI{f}) = hQu [{f}). (7.39)

The equivalence of equations (7.37) and (7.38) can be seen by inserting
the projecting operator

1= {rHds} (7.40)

{r}

between e and e# PR operators in the second line of equation (7.38)
and using the fact that states [{f}) are the eigenstates of both Hy and
P operators, i.e.

ATI{fY) = e
ePRI{fY) = e AR, (7.41)

Inserting equation (7.34) into (7.38) we have

N(f, AK) = hm ; /'OO dTe%gT/ dZReiAK.R
t—o0,to—+—00 (27h)3 J-co -

x ([I5(t,1)| AT (T, R)A|TIS (¢, t0)), (7.42)
where
A =Uy,(t, o) (7.43)
and . A . - - A
A(T,R) = erPRer oty (¢, tg)e wfloTew PR (7.44)

In deriving equation (7.42) we have used the fact that the operators Hy
and P commute, i.e.
[HO, P] = 0. (7.45)



82 CHAPTER 7. TRAJECTORY APPROXIMATION

By using equation (7.34) for the explicit forms of Uy, (t) and Uy, (t, o),
for A(7,R) we have

A R) = exp [ —+ S (Tgyu(t to)a_qe (@) QR
h Q’ Qi

Q,s
+ It to)agy (@7 R)) (7.46)
To evaluate A(7,R)A we use
eCel = eé+b+(1/2)[é’ﬁ], (7.47)

which holds when [C, D] is a c-number. The ground state average is
finally obtained by using relation [12]

(1 10) e %1, 1)) = exp { S0, 10) 7 0, I 1)}

1
2
(7.48)
where L is any operator containing only linear combinations of boson
operators a and af. The application of equation (7.48) to A(T,R)A
combination of operators produces expectation values of a type

<Hs(t’ tO) |aQ,SaJ(rQ,5 + aTQ,sa‘Q,S|HS (t’ to)), (749)

which are to be understood as thermal averages, since the wave function
of the phonon bath at {y, —+ —oo depends on the temperature of the
target. These averages can be calculated by using equation (4.39), so
that we finally obtain the expression for the scattering spectrum,

1 Lerti .
N(e AK) = s / dr / ERN (1, R)eheTHAKR, (7.50)

where

N(rR) = ¢™exp {Z Iqul? [e @R 5(0(Q, 5)) + 1]
Q,s

+ QIR (4(Q, 5))]}, (7.51)
and
IQ;S = t—)OO]-,itgri)—OO IQ’S (t7 tO)

- / dt' Wa(t') e~ @@ (7.52)
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The Bose-Einstein distribution n(w(Q, s)) is given by equation (6.10).
The term independent of 7 and R in equation (7.51) gives a contribution
to the spectrum proportional to §(¢)J(AK), i.e. it gives the elastic line
of the spectrum. For the probability of elastic scattering (or the Debye-
Waller factor), Py, we can write

Py = eV, (7.53)
where

2W = QZ [Iq.s|* [2n (w(Q, s)) + 1]

> g lcoth (%)] : (7.54)

Qs

I

The quantity in equation (7.54) is called the Debye- Waller exponent.

7.3 Temporal dependence of the force
in the trajectory approximation

To evaluate equations (7.51) and (7.54) we must know the temporal
dependence of Wq 4(t) in equation (7.25). Therefore, we have to eval-
uate the projectile classical trajectory projected onto the z-axis, i.e.
za(t). This can be done by solving the Newton equation

d2
m@r = —VVitatic(T) (7.55)

subject to initial conditions

d vV 261'
%z(t — —00) = ——cos 0; = v, (7.56)
and
V26
%R(t — —00) = me sing; Vo =V (7.57)

where ¢; is the projectile initial kinetic energy, V is the unit vector in
V direction and 6; is the projectile incident angle with respect to the
z-axis (surface normal). Neglecting now the static corrugation of the
potential Viaue(r), i.e. dropping out all terms with G # 0 in equation
(3.4), we have

R(t) = Vi+R(t » —o0) (7.58)
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and 2 L

To proceed further analytically, we make necessary approximations.
First, we neglect both static and dynamic interaction between the pro-
jectile and slabs with £ > 0. Second, we make the same approximation
to Q dependence of vg.c(#) as in equation (6.20). We could in principle
proceed with the calculation, but we make an additional approximation
which will enable us to write the final result for the spectrum and the
probability of elastic scattering in a simple and appealing way [18]. We
take

Qe — 0 (7.60)

which is sometimes called the vibrating soft wall approximation [61].
This approximation effectively neglects the fact that the projectile in-
teracts simultaneously with several lattice atoms (sites), so that very
short wavelength oscillations cannot be excited (Armand effect, see
also equation (6.21) and the discussion following it). We also keep only
G = 0 term from the sum in equation (7.21), consistently neglecting
all the effects arising from the static corrugation of the interaction po-
tential. This yields

Ios = \/ h
Qs — 2MN2Dw(Q, S)
x {Q -e(Q, s) [/ dﬂ/b(z(t))ei(w(Q,5)+Q-V)t]

+ zo-e(Q,s) V dtwe“w(@s)m"m”, (7.61)

where the integrals in square brackets 4 can be calculated analytically
when V(z) is given by the Morse potential as in equation (3.15) [14, 18].

4Note that these integrals have the role of the matrix elements of the interaction
potential with respect to the projectile states - see e.g. equation (6.16). Clearly,
when the quantum nature of the projectile can be neglected, the matrix elements
should become identical to the Fourier transform integrals in the square brackets.
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Figure 7.1: Elastic scattering probability for He — Cu(001) and Ne —
Cu(111) scattering systems. Full line: DWBA with @, from equation
(6.21). Dashed-dotted line: DWBA with Q. — oco. Dashed line: TA
equivalent to the one in reference [18].

7.4 Comparison of the elastic

scattering probabilities in the DWBA
and the trajectory approximation

Note that the elastic scattering probability, Py, in equation (7.53),
is always greater than zero and less than one owing to 0 < e™2V < 1
when 2W > 0. Therefore, the trajectory approximation does not have
the unitarity defect which was inherent in the DWBA approach (see
figure 6.5 and the related discussion). In this section we compare the
results for Py, in the trajectory approximation and in the DWBA for
He — Cu(001) and Ne — Cu(111) scattering systems. The DWBA
calculation is based on equations (6.36) and (6.24), where we have
also included transitions into the bound states of the static interaction
potential. This was approximately done as in equation (9.1) in Chapter
9. The interaction potential parameters and target phonon density
of states used can be found in section 9.1 ®. Figure 7.1 displays the
calculation of Py, as a function of the projectile incident energy, ;.
The surface temperature is Ts = 0 K and normal projectile incidence

5A simple ”surface Debye model” is used.
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is assumed 6. After all the approximations made in this calculation,
one can show that the trajectory approximation calculation displayed
here is completely equivalent to the one elaborated in reference [18].
The only difference is in the integral in equation (22) of reference [18]
whose upper limit is the Debye frequency of the target rather than
infinity as in [18]. The figure also displays the influence of the Armand
factor (cut-off wave vector ().) on the DWBA calculation of the elastic
scattering probability. Note that

while
lim Pyy(DW BA) = —oo, (7.63)

which is again a consequence of the nonunitarity of the DWBA. The
comparison of the TA and the DWBA results can be used to evaluate
an upper incident energy limit on the validity of the DWBA approach.
Note here that we expect the DWBA to work better than the TA in
the low incident energy regime, while we expect the TA to provide a
good description of the scattering dynamics in the high incident energy
regime where one can expect that the truly quantum nature of the pro-
jectile fades out. It would be of interest to construct the approximation
to the scattering problem which somehow ”interpolates” between the
DWBA and the TA, reducing to one or to another in the appropri-
ate scattering regime and which treats both the target phonons and
the projectile quantum mechanically (as DWBA approximately does).
The construction of such an approximation is exactly the aim of the
following chapter.

6This additionally simplifies Fourier transforms in square brackets in equation
(7.61).
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To obtain the quantum scattering probabilities wy; to higher order
in the coupling constant, one could in principle calculate the contribu-
tion to transition amplitude (described in Chapter 6) arising from two-
phonon processes, then from three-phonon processes and so on. This
procedure is called Dyson expansion of the scattering matrix and is a
common approach to many-body problems in solid state physics. It is
not too difficult to see that this calculation would be rather complicated
since one should integrate over all possible intermediate phonon wave
vectors and frequencies which satisfy the requirement of conservation
of energy. For two-phonon processes, this would imply two dimensional
summation over Q; and Qs phonon wave vectors with additional re-
quirement that (Q; + Q2)||K; since, then K/||K; i.e. the projectile
atom after the two-phonon process emerges in plane defined by K; and
surface normal so that it can be observed by the experimental equip-
ment (in sagittal plane scattering). Additional condition is needed -
the projectile atom must continue to move in direction 6 after the
collision, otherwise it will not reach the detector.

In this chapter, I shall specify an alternative procedure of finding
the solution to the 7" matrix (or S - the scattering matrix, or U - the
time evolution operator) of the problem. This procedure is usually
called the exponential resummation of perturbation series and its spe-
cific approximation in the context of atom-surface scattering - called
the exponentiated Born approximation.

The application of the procedure to three dimensions seems some-
what complicated due to the quantum numbers characteristic of the
system which is not translationally invariant in all three spatial dimen-
sions.

8.1 Dyson form as the

iteration solution for
the evolution operator

The standard perturbation analysis starts from the integral equation
equivalent to equation (7.6) with the initial condition as in equation
(7.7):

t

Ult,tg) =1—1g | V(U ty)dt'. (8.1)
to
The iteration solution is
e t t1 tn—1
Ult, to) = Z(—i)”g”/t dt, t dtg.../t dt,V (t1)V (t2)...V (t,),
n=0 0 0 0



CHAPTER 8. EBA 89

(8.2)

with
t>t >ty > .. >ty . (8.3)

Introducing the time ordering (or chronological) operator 7' defined as

T{V({t)V(t)} = V(t)V(t2) t1 >t
= V(tg)V(tl),tl < t9, (84)

equation (8.2) can be written as

o

Ut 1) Z /t/t /ttT{V(tl)...V(tn)}dtl...dtn.

(8.5)

The factor 1/n! comes from n! permutations in the set {¢1,%s,...t,}
which all contribute equally to U(t,%y) and they must not be over-
counted (see reference [11], page 391). We can symbolically write

U(t, to) = {exp[—zg / #)dt ]} (8.6)

having, of course equation (8.2) in mind.

Equation (8.5) is called the Dyson form of the evolution operator.
Although it formally solves the problem of finding the evolution oper-
ator, the series on the right hand side of equation (8.2) has infinitely
many terms. One usually calculates the first few terms and discards the
others. This makes the evolution operator nonunitary which violates
the norm and current conservation in applications of such approximate
solutions to the scattering problems.
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8.2 Alternative approach to the
evolution operator - the time dependent
exponential transform

We may also seek the solution of equation (7.4) by introducing the
time dependent unitary transform of the wave function as !

Ut) = W(H)e(),
W(t) = e 90, (8.7)

Inserting the equation above into (7.4) we obtain

2~ wmevewn w2 Den. @)

Since W (t) = exp(—iG(t)) we have

72

W=lgVW = gV +i[G, gV] + —;[G, G, gV + - (8.9)
and
ow BG ; oG, 2 oG
1 _
WS =S+ [G So+ GG S + - (8.10)

Here, [A,B] = AB — BA. The relations above can be obtained by
straightforward expansion of the exponential exp(—iG(t)) ? [62, 44] as
follows:

1 1
efdet = (1+L+ 5L2 +.)A(1 - L+ 5L2 —..)

1
= A+ (LA-AL)+ 5(L2A —2LAL + AL*) +

1
= A+[L A+ S[L [L Al + . (8.11)

Another relation which will prove to be of use is 3

1
etef = exp {A+B+§[A, B

+ SGIA BB+ A 4B +.) . (812

I The following procedure also specifies the way to solve the trajectory approxi-
mation equation (7.27).

20ne has to pay some attention here not to confuse the functions of the operators
with the functions of simple number variables.

3We already used the specific form of this equation in (7.47).



CHAPTER 8. EBA 91

The relations above (called Baker-Hausdorff lemmas) can be obtained
by more elegant means than the brute inspection of the Taylor series
[44].

The whole idea, which is probably obscured by now, is to find W (t)
(or, equivalently G(t)) which makes the right hand side of equation
(8.8) vanish. Then we have 0®/0t = 0 or ® = const = ®;. We start
our quest for G(t) by writing

t

G = g V(hdt +

to
oG
= Ve (8.13)

Let us suppose for the moment that V' (¢) has such operator structure
that

V@),V =Ct,t)-1. (8.14)

Here, C(t,t') is c-number, i.e. not an operator . Then, the double
commutator [V (¢),[V ('), V(¢")]] = 0 and all higher order commutators
also vanish! Thus, the infinite series in equation (8.9) and (8.10) stops
after only two terms and, from equation (8.8) we have
8(I> iy [t

o R 8.15
i = {50 [ cwnar} e (8.15)

to

so that the problem is solved (equations (8.7) and (8.15)) by

t
U(t) = exp {—ig v ()i }exp{ /t dt' /t o, ¢ dt”}\ll( ).
0
(8.16)
It is easy to generalize this to the case when some higher order com-
mutator vanishes, e.g. when [V (¢), [V (¢1),V (t2)]] = D(t,t1,t2) - 1 [62].
The procedure sketched above enables one to solve the forced har-
monic oscillator mentioned in Chapter 2 and elaborated in a realistic
application to atom-surface scattering in Chapter 7 in a closed ana-
lytic fashion. In the one dimensional problem from Chapter 2, the
interaction potential is V (t) = F*(t)a'e™! + F(t)ae™™! where F(t) is
time dependent external force and a' is the phonon creation operator.
It is easy to see that the second order commutator does not contain
operators since

C(t,t) =[V(t), V()] = FOF )™ + F*(t)F(t)e .
(8.17)
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Thus, this simple problem can be solved exactly since the infinite series
in (8.9) and (8.10) can be evaluated due to its termination after a finite
number of terms 4. Note that the Dyson expansion in (8.5) must be
summed to an infinite order for this problem.

The closed form solution for the G operator can be found by writing
it as a power series in the coupling constant g (that is why we have been
dragging ¢ from the beginning - to inspect the power series in g).

G=Y gG, (8.18)
n=1

Inserting this form in equation (8.8) and using (8.9) and (8.10) and
demanding that 0®/0t = 0 we obtain

92+ P20+ o+ G T+ . = Z Zn,g" =0, (8.19)
n=1
where
0G4
7z = ) — —=
1 V(t) g
— 4 aGZ ? 801
Zy = G, V)] - 7~ = 5G]
. i? i 0Gy. 0G,
Zy = i[Gy, V()] + E[Gl,[Gl,V(t)]] _ a[gh -2
(8.20)

It is seen from the equations above that every G, depends only on a
set of G; where 1 =1,...,n — 1. Therefore, the equations can be easily
solved and we conclude after equating all Z,,’s with zero that

t
Gl(t, t()) - ‘/t dt1V(t1)
0

Golt o) = %t:dtl /tjldtz[v(tz),v(tl)]
(8.21)

It is one’s hope that even if the series in (8.9) and (8.10) do not
terminate after finite number of steps, the series in (8.21) will converge
much more rapidly than the Dyson expansion (8.5). If this is the case,

“Note here that C(t,t') is completely analogous to the subintegral function of
®q,s(t, to) in equation (7.33).
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one can approximate better the exact solution by using the displayed al-
ternative approach rather than the Dyson expansion and by calculating
the same number of terms in both expansions. This happens to be the
case e.g. for the polaron [63] and the atom-surface scattering problem
[64, 56]. Of course, one has to have an assurance that the contribu-
tion of G’s (to the evolution operator U(t,ty)) of order higher than the
calculated one can be safely neglected. The inspection of the relative
contribution of different G’s was performed in references [64, 65].

8.3 The alternative approach
applied to the problem of
atom-surface scattering:

The scattering spectrum

In the case of atom surface scattering we can explicitly write the
unperturbed part of the hamiltonian, Hy, which governs the time evo-
lution of the operators, and the interaction (perturbation) part of the
hamiltonian, V;, which governs the time evolution of the wave func-
tion in the interaction representation of quantum mechanics. In order
to emphasize the quantum character of the field of projectile particles
and the vibrations of the target, and to treat them on equivalent quan-
tum mechanical footing ®, both fields can be represented in the second
quantization form, i.e. expressed through the ”fundamental” or ba-
sic phonon and projectile atom creation and destruction (annihilation)
operators [44, 11, 66]. For Hy we write

Hy = H§+H"
t f
Z eKivk(z,i)CKf,k(z’f)cKivk(z,i) + Z hw(Q’ S)GQ,saQ,S’

Ki k(2,0
(8.22)
and for the interaction V
VEKLQ
— fa s
Vo= 9 Z Z k2, £)ok(z,5)»5 Kf, i+Q
Ki,Kf k(z z)ak(z 1) Q,s
1
X CKfak(z,f)CK“k(z,l) a’Q,S + hc' (823)

Here H§ is the part of the unperturbed hamiltonian corresponding to
the projectile atom and th corresponds to the unperturbed hamilto-
nian of the target phonon field (this part was already written in this way

5This is where this approach goes beyond the trajectory approximation.



94 CHAPTER 8. EBA

in Chapter 4 - note that the zero point motion is neglected here since
there is no 1/2 factor as in equation (4.35)). The notation used in writ-
ing this hamiltonian is consistent with the notation used in Chapter 6.
The part of the interaction explicitly written in equation (8.23) which
derives from the dynamic component of the interaction corresponds to
absorption (destruction) of a phonon by the projectile atom and the
hermitian conjugate part, h.c. corresponds to emission (creation) of a
phonon by the projectile atom ©.

In the description of a scattering event we are interested in the
spectrum of the scattered particles Ny, (e, AK), i.e. in the fraction of
scattered atoms which have exchanged certain amount of energy ¢ and
lateral (in the surface plane) momentum AK with the target 7. We can
find this fraction of atoms by projecting it out of the wave function of
the system after the completion of the scattering event with the help
of §-function operators as 8:

Ny, (e, AK) = (U, | §[e — (H(’)’h —&;)|0(RAK — f’) | Ue). (8.24)

i

Here
‘Qe) - tﬂool,ggfoo ‘\Il(t’ t0)> - t%ool,ggfoo U(t, t0)|\110>
= S|W,) = S|i) (8.25)

is the wave function of the system evolved from the initial noninteract-
ing state of the system [i) to the final, also noninteracting state of the
system as in (7.12), AK = K; — K¢ and P is the lateral momentum
operator of the phonon field

P =Y 1nQnq,, (8.26)
Q,s

with nq s standing for the phonon number operator of the mode (Q, s).
g; is the initial energy of the target phonons. Note that we project out
of the target part of the wave function only those ”events” for which
e —€; = €. Note also that the scattering spectrum is unitary, since
integration of the spectrum over all AK’s and ¢’s yields unity assuming

6The explicit form of VKf’Ki,Q

. can be inferred from the derivation in Chapter
k(z,5):R(z,i),8

6.

"Note here that we do not ask about the fraction of atoms which lost certain
momentum in z-direction. This can be uniquely determined from the conservation
of energy and lateral momentum requirements (8.24).

8From now on, we shall follow the notation and the formalism of reference [56].
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the unitarity of the S-matrix (which must be unitary if one does not
degrade its properties by nonunitary approximations). By expressing
the energy and lateral momentum conserving J-functions in (8.24) as
Fourier transforms of exponentials of the operators H(’)’h and P, we
obtain %:

% dr PR i paK)R
N(e,8K) = [ o5 Gyt O

X (W(o0) | e #H PR | g(00)) =

- dr [ IR e nanm)
—o0 2wh J (27h)?

x (i STG—%(thT—P,ﬁX—F’yY)S | ) =

/ © dr [ PR i paxm
—oo 27h J (27h)?

x (i | e KT PXPY) |4y (8.27)
Here R = (X,Y) is a two dimensional radius vector parallel to the
surface plane, and 7 has the dimension of time, although it is not the

physical evolution time of the system. The canonically transformed
operators appearing in the last line of equation (8.27) are defined by:

H = StHE'S,

P, = StP.S,
P, = S'P,S. (8.28)
We know from the previous section that for the S-matrix we can write
S= lim e tGtl) = omiG(o0m00) — =iG (8.29)

t—00,lg——00

The formal solution of equation (8.27) can be presented somewhat more
clearly by introducing a unified vector notation for the variables and
exponentiated operators:

(1, X)Y) = (&,6,&) =€,
(%a AKxa _AKy) — (803 €1, 82) =g,
(wQ,ja_sz Qy) — (V07V17V2) =V,
H' P, P
(57— = (o Hi Ha) =H, (8.30)

9Note the similarity with the procedure used to derive the trajectory
approximation.
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where due to the property that th and P commute, also the compo-
nents of the operator 1 commuute with each other, i.e.

[Hy, Hy] = 0. (8.31)

Using the notation of equation (8.30) we can write

2
%T — (AK)R =Y &6 = &,
=0

H" P, P, 2
TT— %X — EY = g%lgl - HE,

L= (Lo, L1, Ls) = SIS, (8.32)

which enables us to express equation (8.27) in a compact form:

N, (e,AK) = / / / 5 exp(ief)
X (1 |exp( iLE) | ). (8.33)

To obtain a perturbative solution to equation (8.33) we proceed by
making use of the operator identity which was demonstrated in the
previous section:

L =SS =M=y %G"[’H], (8.34)
n=0 """

where G"[A] = [G, [G, ...., [G, A]] is the n-th order repeated commutator
of G with arbitrary operator A. Using this we find

Ny, (e, AK) = / / / 5 exp(ie€)
x (i | exp[—i(H + W)§ | ) (8.35)
where
W = Z_: %G"[%]
= e9He ¢ — 7. (8.36)

We have here explicitly written the n = 0 part of W as H. The
equations in this section appear rather complicated, but this is a con-
sequence of many symbols involved rather than difficult mathematics.
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The only thing we had actually to do in this section was to transform
the d-operators into integrals over 7 and R coordinates and carry out
the canonical transformation (8.34). All the rest was known from pre-
vious sections. However, the problem is far from being actually solved.
Fortunately, there exists a procedure to treat the diagonal matrix ele-
ments of operators which can be represented as exponential functions
of some other operators. This procedure is called the generalized cumu-
lant expansion method [67]. The basic idea is to ”move” the ”averaging”
(here, the diagonal matrix element (3|...|7)) into the argument of the ex-
ponential function '°. According to reference [67], once W has been
found, Ny, (&) may be expressed as a cumulant expansion,

In N, (e) = 71(e) + 12(e) + ..., (8.37)
where
€
nie) = i [ de' < W) >
0
€ 154
yle) = — / de’ / de" < WENW(E") >e,  (8.38)
0 0
and so forth. The cumulants < ... >, are evaluated on the initial

state |7) and the € dependence of W(e) is generated by H alone, i.e.
W(e) = eHeye—HE  The cumulants involve expectation values
with means subtracted (in our case (i|...|7)). Explicitly,

<W(e) > = (W)
<W(EW(E) > = W(E)W(E)) — W(e)W(E))
(8.39)

All the relations presented so far are exact. Of course, one has to
calculate all the terms in the sums (8.18), (8.36) and (8.37).

8.4 EBA :
Exponentiated Born Approximation
to the scattering spectrum

The EBA approximation consists of retaining only the full G; and
the diagonal components of G5 in the series (8.18) for the operator G.

10This is exactly what we have already done in equation (7.48), albeit for much
simpler ”argument” of the exponential function.
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The diagonal means here that we are considering only processes where
k; = ky in G, i.e. there is no exchange of energy in these processes
[65, 64] (this will all soon become clearer when we explicitly write down
the expressions for G; and G;). Physically, this approximation means
the neglect of correlated multiphonon processes in the spectrum rela-
tive to the effects brought about by the multiple emission or absorption
of uncorrelated phonons [63, 56]. By uncorrelated processes we mean
that successive emissions (absorptions) of phonons are independent.
The correlations between successive emissions (absorptions) of phonons
are contained in higher terms of the G-series. Properly calculated G,
term contains the correlations between pairs of phonons emissions (ab-
sorptions), G5 term contains the correlations between trios of phonons
emissions (absorptions) and so on [12, 63].

We can now proceed to calculate G; and G5 contributions to the G
series. We shall temporarily abandon the specific notation developed
so far in order to clearly explain what will be done next. The G, part
is easy - it just requires the integration of the interaction over time.

The time dependence of the perturbing, dynamical part of the in-
teraction potential can be explicitly written since the time dependence
of the projectile and phonon Heisenberg operators is quite simple:

Vo= ) V(K K bz, ke ) 8)
KiaKfik(z,i)ak(z,f)’s

X cheif(kf)tckie_“(k")taAK,se_i“(AK’s)t + h.c., (8.40)

where we have explicitly written the quantum numbers K and &, only
where convenient. It will prove usefull to transform one of the sums
above into integration over the transferred energy w = e(k;) — e(ky).
This yields

Vo= ¥ [ V(K Kt AK ke, e, 8)
AK ks 7~

X chckie_i“’taAK,se_iw(AK’s)t + h.c., (8.41)

where V differs from V only by a multiplicative factor which is a prod-
uct of L, /2 arising from a transformation of a discrete sum over &, into
an integral over k!, and a Jacobian factor m/k., arising from a transfor-
mation of integral over k! into an integral over w (this is all very similar
to what has already been done in Chapter 6) and AK = K; — K,.
Now we can calculate G; by integrating (8.41) over ¢. This yields

Gi= Y. V(K ek;); AK,w(AK, s))chckiaAK,s + h.c. (8.42)
AK k;,s
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The é-function which appears as a result of integration of the term

efi(wfw(AK,s))t

over time, ¢, can be transformed into a Kronecker symbol (at least for
continuum-continuum transitions) as in equation (6.28) which can be
inserted into "new” on-the-energy-shell matrix elements V), accounting
also for the integration over w.

Note that the first and second two arguments of the matrix element
V correspond to projectile’s initial state and the lateral wave vector
and energy exchanged with the target in a single-phonon emission (ab-
sorption) event.

For the evaluation of GG, term we have to calculate some commuta-
tors. ¢ and a operators commute, o’ and a operators satisfy the bosonic
commutation relations (4.33) and 4.34) while ¢’ and ¢ operators can be
also assumed to satisfy the bosonic commutation relations - it is of no
importance since there is only one projectile atom in the system. The
G4 term can be shown to take the form [65]

Gy = / / W (K, (k) AK, w, 5 AK, o, ')
002’/T 0027T

AK AK’ 58,8
x  p(Ki e(k;); AK + AK' w + W) A(AK, w, s; AK', W', 8')
+ G (8.43)

where

A(AK,w, s; AK' W', 8') =/ dt/ dt’[afAK,s(t)'i'aT—AK,s(t)]

X [oatcw (#) + 0l s ()]
(8.44)
C(K;, e(ky); AK, w, s; AK', W', §') =
= V(K; + AK' e(k;) + w'; AK, w, 5)
x V(K e(k;); AK', W', 8")
- V(K;+ AK,e(k;) + w; AK', W', §)
x V(K e(k;); AK,w, s), (8.45)

p(Ki e(l); AK,w) = ol o
K, = K;+AK
€ = €+w, (8.46)
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and

Gy = lim V(K e(ki); 0;0)Pclcu f(tto).  (8.47)

to—>—00,t—
0 0, ooki

Here, f(t,%o) is a real function ''. The diagonal part of G is seen

to be equal to G¥*9. If the interaction matrix elements, V were in-
dependent of the initial state of the particle, which is not the case in
atom-surface scattering, the whole Gy would reduce to Gg“‘g . However,
for quasielastic scattering (i.e. very close to elastic scattering [64]),
we expect the dominant states occurring in the integrals to be close
in k space to the initial state. The EBA is recovered by replacing
V(K; + AK' e(k;) + w'; AK, w) with V(K;, e(k;); AK, w) which makes
the nondiagonal terms of G5 (and all nondiagonal terms of G,,, m > 1)
to vanish. Since G is a real function, we have:

- ~diag _;diag - ~diag _ - ~diag
piess He Gy iGy" —iGY H="2H, (8.48)

which cancels the —H term in equation (8.36). Since G part contains
only one phonon operator, only [G1,H| and [G1, [G1, H]] commutators
are different from zero and we are left with only two terms for W in
(8.36). Returning now to the specific notation introduced earlier we
have that

W =W +w?, (8.49)
in which
W = Gy, M)
. K;,AK
= Z I:Zhylvk(z,i),k(z,f),s(_)CL¢+AK,k(Z,f)cKiak(z,i)aQas
KiaAK’k(z,i)’k(z,f)ﬁs
+ he]oxg, (8.50)
1
W = =[G (G )
~ Z cI{iak(Z,i)cK“k(Z,f)

Kisk(z,i) ke, 1)

K;,AK +1 7K, AK 2
X z th[Vk(:,i),k'(z,f),s('f')] Vk’(:,f),k(z,f),s(—{_) x g,

/
AK,k:(Z,f),s
(8.51)
where, for continuum-continuum transitions
KiaKfaQ 6
Ki,AK ( ) _ k(z,i)ak(z,f)as Kf’K@+Q+G
beiyhe, s\ T) = h

11Gdiad is obviously closely related to ®q (¢, to) in equation (7.33).



CHAPTER 8. EBA 101

(') .
% / dit e % (K ke, 1) —€(Kisk(z,0)) Fhq,s )1
—0o0

K, K; G
‘/;C(z,i),k(t,(?)—t_s 6k(z,f)akz(:t)®(kf2(j:)2)
h

(8.52)

as in equation (6.28). Here, the tilded matrix element, V', is calculated
with projectile atom wave functions normalized with respect to the
unit current in the z-direction, and is box-normalized in the two lateral
directions i.e. the wave functions bear a multiplicative factor 1/1/L%wv,
(see Chapter 6).

We can now proceed and calculate the cumulants < W(e) >, ...,
needed for the energy and lateral momentum resolved spectrum Ny, (&)
in equation (8.37). Since the time dependence of W(e) is governed
by the unperturbed part of the hamiltonian # corresponding to target
phonons, the transformation eiHe(...)e’ilHe acting on ¢l caq,s com-
bination of operators produces

chkaQ,s exp(—iw(Q, s)T — Q- R)).

After some mathematics [65], we conclude that only the first two cu-
mulants need be taken into account in the EBA and we arrive at the
expression

o drd’R
R L

x exp2WEFBAR, 1) — 2WEB4(0,0)], (8.53)
where
WEPAR,7) = > [[VEHRE () [ [a(w(Q,5) + 1]
G,Q,S,k}(z,i)

X 6—1(W(Q,S)T—(Q—|—G)R)
+ | K, Q+G (_) |2 ﬁ(th s)ei(w(Q,S)T—(Q+G)-R)] ’

k(z,i)k(z, )5
(8.54)

is the so-called driving function which is generally complex and whose
zero point value 2W¥B4(0,0) = 2WFB4 gives the Debye- Waller expo-
nent in the EBA. Here w(Q, s) is restricted only to positive values and
Ny is the Bose function describing the initial distribution of phonons
thermally excited in the substrate kept at finite temperature 7s. Equa-
tions (8.53) and (8.54) describe the scattering spectrum containing all
uncorrelated real multiphonon processes.
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The EBA expression for the Debye-Waller factor which describes
specular elastic scattering is then given by the 6(¢)6(AK) component
of the scattering spectrum. For substrates at finite temperatures T
this reads:

_owEBA K;,Q+G _
TV = ep{— Y [[VERE () I [ (h0(Q, 5)) + 1]
G5Q735k(z,i)
K, G 7
+ (VRS | () P g (h(Q, 9))]}
= o LpuRETH (8.55)
where RJPZ-WBA is the reflection coefficient introduced in Chapter 6.

The mean energy transferred in the course of a collision can be found
in the EBA as

UEBA(K, Tg) = / ede / d(AK)NZBA (e, AK) (8.56)

which can be easily shown to reduce to

pPBA(k;, Ts) =i aa 2WEBA(r = 0,R = 0). (8.57)

8.5 Additional comments
concerning the use of the EBA

in atom-surface scattering

After all the mathematics in the previous section, it is still not quite
clear what kind of physical approximations have been introduced. In
this section, I will try to give at least a partial answer to this question.

First, due to all the approximations introduced, only the uncorre-
lated multiphonon processes are included in the EBA. The subsequent
emissions (absorptions) of phonons in the EBA are assumed to be sta-
tistically independent [67]. This means that the emission (absorption)
of a phonon does not depend on what has happened to the projectile
atom ”in the past” i.e. whether it already emitted (absorbed) some
other (or the same) phonon. We could also say, that the projectile
atom emits (absorbs) phonons with the same probability amplitude dur-
ing its motion through the phase space. If this were really the choice of
Nature, then only Gy and the diagonal component of G5 (G%9) would
survive in (8.18).

Second, note that the EBA is quite similar to the forced oscillator
model. The EBA was in fact inspired by the forced oscillator model,
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as I hoped to show by introducing numerous footnotes pointing to this
fact. The only difference is that in the forced oscillator model, W
and W® 12 are operators composed of only phonon operators (a, a’),
while in the EBA, they contain also the projectile operators (c, cf). If
we write in EBA everywhere where the CL cx combination of operators
occurs, the clT(i ¢k, instead (diagonal, recoilless term), the projectile atom
becomes represented by a c-number, rather than by an operator and we
recover the forced oscillator model - the projectile atom becomes the
time dependent force. Where the EBA goes beyond the forced oscillator
model is the effect of recoil because the interaction matrix elements in
(8.52) depend on both the initial and final projectile states.

Third, the EBA is a unitary approximation: it conserves the parti-
cle current during the collision. However, the EBA does not conserve
total energy in the collision event. Although the EBA conserves en-
ergy in each one-phonon emission (absorption) event (as the DWBA
also does), there is a finite probability in the EBA that projectile loses
more energy than it has initially carried (even when one includes the
sticking processes). In the region of parameters where the EBA should
work, these probabilities are vanishingly small (although not zero).

Fourth, if we expand the exponential of the driving function (8.54)
around the point (R = 0,7 = 0) up to the first order, and substitute it
in (8.53), we obtain the DWBA approximation. Thus, for low Debye-
Waller exponents, where this expansion is allowed, the EBA reduces to
the DWBA. On the other hand, if we deal with the situation where the
scattering is quasielastic regarding the projectile motion i.e. the projec-
tile atom final state is quite close to its initial state which happens for
heavy atoms (Kr,Xe) which recoil negligibly, we obtain the trajectory
approximation (forced oscillator model) result [19]. Therefore, the EBA
smoothly interpolates between the single-phonon regime (DWBA) and
quasielastic multiphonon regime (forced oscillator model). Figure 8.1 il-
lustrates the EBA and the FOM-TA (forced oscillator model-trajectory
approximation) calculation of the Debye-Waller exponent for the scat-
tering system Ar — Cu(111) [19, 58]. The potential parameters were
fixed in this calculation (as in section 9.2 - see also the approximations
to the phonon spectrum of Cu(111) surface) but the projectile mass was
varied in steps of 1 amu (atomic mass unit). The projectile incident
energy is ¢; =36 meV and the incident angle is ; =70 °. The results
for the Debye-Waller exponent (DWE) are plotted as a function of the
projectile mass, both for Ts — 0 and Ts = 300 K. It can be seen that

12))(2) becomes a c-number [64] for the forced oscillator model.
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Figure 8.1: 2W(0,0) (DWE) for "Ar” — Cu(111) scattering as a
function of the projectile mass. Full line: EBA calculation. Dashed
line: Trajectory approximation. Dash-dotted line: DWBA calculation.
Square: Experimental point.

2W(Ts — 0) does not depend on projectile mass in FOM-TA (dashed
lines), but it does in EBA (full lines). The FOM-TA values are seen to
be the limiting values of EBA when the projectile mass, m tends to in-
finity, i.e. when the scattering is truly quasielastic. Negative logarithm
of the DWBA elastic scattering probability (this is DWBA counterpart
of the Debye-Waller exponent) is also plotted in this figure (dash-dotted
line). As promised at the end of previous chapter, the EBA smoothly
interpolates between the DWBA and the TA values, reducing to the
DWBA (TA) in the low (high) projectile mass limit. The experimental
point in this graph was taken from reference [58]. The version of the
forced oscillator model chosen for the calculations displayed here [18] 3
does not include recoil effect. There are ways to approximately include
the recoil effect in the FOM-TA calculations [16, 21] which makes the
FOM-TA model to agree better with the EBA [68].

13We have used the FOM-TA version of reference [18] and applied it to the scat-
tering system studied as it was applied in reference [58].
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In this chapter I shall present the examples of application of the
EBA scattering formalism developed in Chapter 8 to selected scatter-
ing systems studied experimentally. The chapter is divided in several
sections. First five sections specify the models of interaction potentials
and vibrational dynamics of the systems studied and the remaining sec-
tions are concerned with the calculated scattering spectra and related
quantities pertaining to these systems.

* Scattering systems

9.1 He — Cu(001)

This system was studied using the EBA formalism in references [7, 69,
54]. The phonons of the Cu(001) surface were modeled by a single
phonon branch corresponding to the Rayleigh wave (RW) of Cu(001)
surface. The dispersion of this mode was taken to be linear and indepen-
dent of the direction of the wave vector Q with a maximum frequency
of wp =25 meV at the edge of the surface Brillouin zone which was
approximated by a circle (reference [7]). The polarization vector of the
mode was taken to be in z-direction, localized at the surface according
to [e(Q)|?> = 3w(|QJ)/2wp. This relation is correct for long wavelength
phonons, but is surely incorrect for larger values of |Q| where it pro-
duces unphysical localization larger than 1. However, the density of
states of such a model is exactly the same as in the well known De-
bye model of phonons. More sophisticated model was used in reference
[54], where the dispersion of the RW(Cu(001)) mode was taken to be
sinusoidal with a maximum frequency of 17.5 meV at the K point of
the surface Brillouin zone '. The polarization vectors were again taken
to be in the z-direction, with a localization modeled according to lat-
tice dynamical calculations (this produces the correct long wavelength
behavior). The static interaction potential was approximated by the
uncorrugated Morse potential (see equation (3.15)) with parameters
specified in the table below.

IThe Cu crystal has the FCC structure with the lattice parameter a(Cu) = 3.61
A.
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‘ ‘ Morse potential parameters
| System | D[meV][d[A]]| z[4] |
| He — Cu(001) | 7.0 | 0926 | 3.64 |

This model interaction potential is in a good agreement with the one
calculated in reference [31]. The simplified model of the vibrational
dynamics of Cu(001) surface allows one to calculate the coupling of He
atoms only to the topmost layer of the target atoms.

9.2 Ne, Ar, Kr — Cu(111)

These scattering systems were studied by means of the EBA formalism
in reference [19]. The isotropic Debye model for RW mode of Cu(111)
was again used with a maximum frequency of wp =23 meV 2. The Bril-
louin zone was taken to be circular in shape. For Ne, Ar, Kr — Cu(111)
scattering systems the Morse potential parameters are specified in the
table below.

| | Morse potential parameters
| System | D[meV]|d[A]] z [A]]
Ne — Cu(lll) 15.8 0.778 3.33

Ar — Cu(111) | 582 | 0.799 | 3.33
Kr — Cu(111) | 895 | 0.826 | 3.28

The D and d parameters were taken from calculations in reference
[71] (see also reference [58]). These potentials support = 10,26 and
48 bound states for Ne, Ar and Kr, respectively, so that the prompt
sticking effects (the projectile atom after the collision event may remain
in one of the bound states of the interaction potential) dominate in these
systems at low projectile incident energies. The effects of sticking were
calculated in references [19, 57].

Figure 9.1 displays the static interaction potential used in the EBA
calculations (to be presented) for the scattering systems described in
this section.

9.3 He — Xe/Cu(111)

This system was studied within a framework of the EBA in references
[65, 54, 72]. The phonons of this system were studied in references [55]

2The experimental phonon spectrum of Cu(111) can be found in ref. [51]
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Figure 9.1: The Morse static interaction potentials for Ne, Ar, Kr —
Cu(111) scattering.

and [54] by setting up the full dynamical matrix in the slab approach
described in Chapter 4. This was possible due to the fact that Xe
atoms on Cu(111) substrate form a commensurate overlayer structure
[55], so that the periodicity in the directions parallel to the surface ex-
ists. Namely, the Xe overlayer forms a hexagonal (v/3 x v/3) R30° close
packed (HCP) two dimensional structure commensurate with the sub-
strate [73] (see figure 3.2). The parameters needed for the calculation
of the dynamical matrix are specified in the following table:

| Force constant | Value [ N/m ] |

plu—Cu 28.0
pre 3.7
e 0.086
JXe-Xe 0.5
a{(eer 0

The nearest neighbor Xe-Xe distance is dX¢~X¢ = 4.42 A[73]. All
other force constants were set equal to zero. Subscript 1 denotes the
coupling to the nearest neighbor atom. Superscripts denote the atoms
which are connected via a particular force constant. «’s and 3’s are the
tangential and radial force constants, respectively (see Chapter /). Note

here that the force constant 3;¢ ¢ needed to reproduce the dispersion



CHAPTER 9. COMPARISON OF... 109

12

10 £ RW

6 -

A Xe/Cu(111) <112> |

w(Q) [meV]

SH

0 L 1 L 1 L 1 L 1
0.0 0.2 0.4 0.6 0.8

O [UA]

Figure 9.2: The dispersion curves for phonons of the Xe/Cu(111) sys-
tem along I'-K direction of the surface Brillouin zone. Xe overlayer
induced modes are denoted by SH, L and S. Rayleigh wave mode of
Cu(111) surface is denoted by RW.

relations is 3 times smaller than the value one would expect from Xe-
Xe gas phase interaction potential. The reason for this extreme force
constant softening is at present unclear and may be indicative of some
peculiarity of the Cu substrate [55, 74, 75, 76]. The attempt to interpret
the peaks observed in TOF spectra for this system as pertaining to
shear horizontal mode has failed, because the probability of exciting the
shear horizontal mode along the high symmetry direction of the surface
Brillouin zone is vanishingly small and exactly zero in the DWBA [55,
75, 76]. The dispersion of vibrational modes obtained from the present
dynamical matrix calculation are displayed in figure 9.2.

There are three modes (denoted by SL, L and S in figure 9.2) in
this system which are almost exclusively localized in the Xe overlayer
and with mutually perpendicular polarization vectors (except for small
interval in Q). The SH mode is polarized dominantly in the surface
plane with the polarization vector perpendicular to the wave vector Q
(shear horizontal mode), the L mode is polarized dominantly in the
surface plane with the polarization vector parallel to the wave vector
Q (longitudinal mode) and the S mode is polarized dominantly in z-
direction (shear vertical or transverse mode). Note that the S mode
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is almost dispersionless with a constant frequency of 2.62 meV. The
L mode exhibits a zone-center frequency gap i.e. w(®Q = 0,L) = 04
meV # 0 which is a consequence of the commensurability of Xe mono-
layer with the Cu(111) substrate [77]. The magnitude of this gap is
directly related to the tangential Xe-Cu force constant, ¢ “*. It is
interesting to note here that from the magnitude of the L-phonon zone
center gap one can extract the information on the corrugation of the
adsorbate (Xe) - substrate (Cu) interaction potential [55, 77] which is of
great importance for the theory of sliding friction and structural phase
transitions [2, 78, 79].

More detailed characteristics of the polarization vectors of these
modes are displayed in figure 9.3. Note that the S mode becomes
surface delocalized in the wave vector region where it meets the RW
phonon of the Cu substrate (the region of avoided crossing). The same
happens to the L mode (only at a different value of the wave vector,
since the L mode meets the RW mode of Cu(111) surface for smaller
@) and the L mode becomes additionally elliptically polarized i.e. its
polarization vector, e(Q,s = L), exhibits a small z-component (max.
~ 14%).

A more detailed discussion of phonons in this system can be found
in reference [55]. The surface averaged (G = 0 component) of the
He — Xe/Cu(111) interaction potential was modeled with the Morse
potential with the parameters specified in the table below.

‘ ‘ Morse potential parameters
| System | D[meV]|d[A]] z [A] ]
| He — Xe/Cu(111) | 6.6 | 0.82 | 3.49 |

This potential supports three bound states with energies Fy = —4.53
meV, E; = —1.55 meV and E; = —0.13 meV. The parameters of the
potential are quite close to those obtained using the pairwise summation
of He-Xe gas-phase potentials [22, 29, 55, 80].

9.4 He — Xe/Cu(001)

This system was studied both experimentally and theoretically in ref-
erences [74, 73, 55, 72]. Xe monolayer forms again the HCP structure
which is, however, incommensurate with the Cu(001) substrate, so that
the full dynamical matrix cannot be set up for this system. It is possible
[81], however, to treat the Cu(001) substrate as a rigid and homoge-
neous supporting medium for the Xe overlayer. The diagonalization
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Figure 9.3: The polarization vectors of SH, L and S phonons of
Xe/Cu(111). Upper panel displays the localization of the modes, while
the lower panel displays the portion of the z - polarized component of
the polarization vector of the L-phonon. The percentage above the full
squares in lower panel denotes the localization of the L-mode in the
adlayer.
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Figure 9.4: The dispersion curves of SH,LL and S modes of Xe mono-
layer on Cu(001) surface as a function of the direction (angle ¢) in the
Brillouin zone of the Xe superstructure. ¢ = 0° corresponds to (I'-M) x,
direction.

of the one-layer dynamical matrix then produces dispersion curves and
polarization vectors of SH, L. and S modes which are of completely pure
character (either z, longitudinal or shear horizontal for all values of Q)
and 100 % localized in the Xe monolayer. The parameters needed for
setting up the dynamical matrix are specified in the table:

| Force constant | Value [ N/m ] |

Xe—Cu(001

Xe~Cu(001) 3.8
Xe—Xe 0.42
e Xe 0.012

The nearest neighbor Xe-Xe distance is dX¢=X¢ = 4.40 A for this sys-
tem (74, 55]. Br e~ Oul00) force constant is again much softer than one
would expect from Xe-Xe gas phase interaction potential. Due to the
incommensurability of the Xe adlayer with the Cu(001) substrate, the
L mode does not exhibit a zone center gap in this system , which is
also confirmed experimentally [74]. Figure 9.4 displays the dispersion
curves of SH, L and S modes of Xe/Cu(001) obtained from the dynam-
ical matrix with the parameters specified above. The parameters of
the He — Xe/Cu(001) Morse interaction potential are specified in the
table below.
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‘ ‘ Morse potential parameters
| System |D[meV]|[d[A]] z[A] |
| He — Xe/Cu(001) | 64 | 1.03 | 3.60 |

9.5 He — Xe(111)

The vibrational dynamics of Xe(111) can be quite successfully described
by the use of a slab lattice dynamics formalism. It turns out that
the force constants needed to reproduce the experimentally determined
dispersion curves are quite close to those obtained from Xe-Xe gas phase
potential [82]. Unlike in the previous models, we have here connected
the first and second neighboring Xe atoms. The parameters used for
setting up the dynamical matrix for this system are:

| Force constant | Value [ N/m ] |

Xe-Xe 1.58
pre=Xe -0.075
apeXe 0.004
ay X 0.015

All other force constants were set equal to zero. The subscripts 1
and 2 correspond to nearest and second nearest neighbor force con-
stants. The nearest neighbor Xe-Xe distance is dX¢=X¢ = 4.37 A[83]
and the Xe crystal grows in the FCC crystallographic arrangement.
One should compare 3;¢ ¢ force constants for this system with those
for Xe/Cu(111) and Xe/Cu(001) systems. The dispersion curves ob-
tained from the dynamical matrix with 50 Xe(111) slabs are shown in
figure 9.5. The parameters of He — Xe(111) Morse interaction poten-
tial were obtained from the pairwise summation of He-Xe gas phase
potential [80] which yields the parameters specified in the table below.

‘ ‘ Morse potential parameters
| System  |[D[meV][d[A]]| z[A] ]
|He —» Xe(111) | 72 [ 076 | 3.44 |

* Measurable quantities
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Figure 9.5: Phonon dispersion curves of Xe(111) along the I'-M direc-
tion of the surface Brillouin zone. Lines: Lattice dynamics calculation.
Circles: Experimentally determined peak positions.

9.6 Debye-Waller factor and exponent

The Debye-Waller factor in the EBA formalism is obtained from equa-
tion (8.55). Note that the depletion of the specular, elastic peak in
the EBA arises as a consequence of inelastic processes: the projectile
atom has a finite probability to emit (absorb) a phonon resulting in
the change of its wave vector and energy. This is quite different from
the Glauber - van Hove concept of the Debye-Waller factor [84, 85] in
which there is no link through the energy or momentum conservation
between the values of the lateral momentum change and lattice dis-
placements appearing in the expression for the Debye-Waller exponent
[49]. The Glauber - van Hove Debye-Waller factor can be interpreted
as a consequence of renormalization of the interaction vertices by mul-
tiple vacuum fluctuations of the phonon field (”quantum noise”). On
the other hand, the Debye-Waller factor in the EBA arises as a conse-
quence of real on-the-energy-shell phonon excitation processes, which
act so as to reduce the probability of detecting the projectile in the
elastic channel.

A thorough discussion concerning the different concepts of the Debye-
Waller factor can be found in references [86, 87].
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In this section I shall present the evaluations of equation (8.55) for
some of the scattering systems parametrized in the previous sections.

9.6.1 Ne, Ar, Kr — Cu(111)

Figure 9.6 represents the comparison of the Debye-Waller exponent
calculated in the EBA [19] with the measured probabilities of elastic
scattering [58, 88| for the scattering systems Ne, Ar, Kr — Cu(111).
The well depths of the interaction potentials are larger than the ”com-
ponent of energy in z-direction” (this is the incident energy multiplied
by the square of the cosine of the incident angle) which amounts to
4.21 meV, so that the effects of transitions into the bound states of the
atom-surface potential cannot be neglected. To simplify the summa-
tion over the transitions into a large number of final bound states, |b),
we have replaced the latter by a quasi-continuum and made use of the
relation

> [ dn= /deb@, (9.1)

where ny is the quantum number of the bound state and ¢, is the energy
of the state n,. Equation (9.1) holds in the case of Ne, Ar and Kr atom-
surface potentials 3. Calculations with the discrete spectrum of bound
states have produced the values which for these systems are indistin-
guishable from those obtained from the quasi-continuum approximation
for the bound states. However, when there are only few bound states,
as is the case when the projectile is a He atom, the quasi-continuum
approximation for bound states spectrum breaks down.

The agreement between the theoretical and the experimental re-
sults for the DWF in figure 9.6 is seen to be excellent. The trajectory
approximation results of reference [18] , applied as in reference [58] ,
are seen to be inferior to the EBA although the trajectory approxima-
tion is generally assumed to correctly describe the scattering of heavy
projectile atoms from surfaces. It was shown in reference [19] that the
trajectory approximation cannot be safely applied in the regime of scat-
tering studied here, and that e.g. Ar atom is not "heavy enough” for
the trajectory approximation to hold 2.

3For the Morse potential, the derivative de,/dn; can be found in [89].

4Tt should be added here that more advanced schemes of trajectory approxi-
mation which approximately include the projectile recoil effect yield better results
[68].
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Figure 9.6: The Debye-Waller exponent for Ne, Ar, Kr — Cu(111) scat-
tering system.Full lines: EBA calculations. Dashed lines: Trajectory
approximation. Symbols: Experimental data.

9.6.2 He — Cu(001)

Figure 9.7 displays the calculation of the elastic part of the scattered
intensity for He — Cu(001) collision system [7]. The experimental
results are taken from reference [90]. It is seen that the agreement is
quite satisfactory, although an extremely simple model of vibrational
dynamics of Cu(001) was used (the Debye model of the RW phonon of
Cu(001) with a circular approximation for the surface Brillouin zone
shape). The nonlinearity of surface vibrations of Cu(001) at higher
target temperatures had to be included in the calculations. This was
done by using a simple model as in reference [91].

9.6.3 He — Xe(111)

Figure 9.8 displays the calculation of the Debye-Waller exponent, 2W
as a function of the projectile incident energy for the He — Xe(111)
collision system. Note the effects of transitions into the bound states
for low incident energies of He. Since the final density of states for these
transitions is discrete, a characteristic resonance behavior occurs when
kinematic conditions favor the transition of He atom into a particular
bound state of the He — Xe(111) interaction potential by emission of
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Figure 9.7: The probability of elastic scattering (Debye-Waller factor)
for He — Cu(001) scattering system as a function of the sample tem-
perature. Lines: EBA calculation. Symbols: Experimental data.

a phonon. This effect is reminiscent of kinematic focusing [6, 92] and
a similar resonance behavior was apparently found in reference [93] for
H, and D, scattering from Cu(100) surface.

It should be added at the end of this section that comparisons of the
calculated and measured values of the Debye-Waller factor can serve
as a relatively straightforward measure of the reliability of the various
atom-surface potentials [58, 19, 88, 7].

9.7 Angular resolved TOF spectra

The angular resolved TOF spectra can be obtained in the EBA formal-
ism by using equation (8.53). The evaluations of this equation involve
the use of direct and inverse Fast Fourier Transforms (FFT).

We have already presented two angular resolved TOF spectra in
figures 5.2 and 6.2 recorded in the dominantly single-phonon regime of
scattering. In this section we shall concentrate on multiphonon regime
of scattering and the influence of multiphonon processes on the angular
resolved TOF spectra.

There are basically two distinct types of multiphonon TOF spec-
tra depending on the vibrational characteristics of the target. If the
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Figure 9.8: The Debye-Waller exponent (DWE) for He — Xe(111)
scattering system. Full line: 6; = 0°. Dashed line: 6; = 45°.

frequencies of dominantly z-polarized surface phonons do not exhibit
dispersion (variation of phonon frequency with the phonon wave vec-
tor), as is the case for Xe/Cu(001) and Xe/Cu(111) systems, the TOF
spectrum is dominated by a series of approximately equidistant peaks
(on the scale of exchanged energy). On the other hand, if the fre-
quencies of dominantly z-polarized surface phonons do show significant
dependence on the phonon wave vector, the TOF spectrum has usually
a continuous, gaussian-like appearance. This can be easily understood.
The coupling of projectile atoms to the target vibrations is strongest
for z-polarized modes and they dominate the TOF spectra, especially
in the multiphonon scattering regime [54]. A particular multiphonon
event consists of n, emissions and n, absorptions of phonons (n, and
n. being integers). But, for the dispersionless z-polarized modes, this
event leaves ”a mark” (peak) in the TOF spectrum at exchanged energy
equal to AE = hwg(n, — ne), where wg is the frequency of the mode.
Therefore, the multiphonon spectrum pertaining to a surface sustain-
ing dispersionless, dominantly z-polarized surface phonons, consists of
discrete peaks separated by hwg. On the other hand, for surfaces sup-
porting z-polarized surface phonons showing significant dispersion, we
obtain a continuos TOF spectrum since the spectral intensity of mul-
tiphonon processes can be traced at any exchanged energy AF.

A direct numerical evaluation of equation (8.53) for dispersionless



CHAPTER 9. COMPARISON OF... 119

modes is not feasible. However, it is possible to analytically simplify
equation (8.53) to yield a more convenient form for numerical eval-
uation. It can be shown [57] that the TOF spectrum calculated for
projectile scattering from dispersionless (i.e. Einstein) modes can be
represented it the EBA as

NeBo (AE,AK) = e™?"s Y N(AK)S(AE — lhws), (9.2)
l=—o0
where
d2R —AK-R
Ni(AK) = 92 ¢ P (R), (9.3)
and
l
(n(ws) + VSR, +)
P(R) =
HR) N n(ws) VAR, )
% Dy An(ws) (n(ws) + DVER, HVER )}, 04)
with
ViR, 1) = Y VT ()R, (9.5)
Qikz,1),G

where the notation is the same as in Chapter 8 (2Wy is the Debye-Waller
exponent calculated for the dispersionless mode). Index S denotes here
the particular dispersionless mode we are interested in.

Note that after the calculation of the TOF spectrum, NEJ# in the
EBA, we must again select only those processes (i.e. combinations of
AFE and AK) which are seen by the detector (and which satisfy the
lateral momentum and total energy conservation requirement). There-
fore, we use the scan curve, as in the DWBA, equation (6.26) to select
those processes.

9.7.1 He — Xe/Cu(111)

Figure 9.9 shows the results of calculation of the EBA scattering spec-
trum based on equation (9.2) for the He — Xe/Cu(111) collision sys-
tem. Only S modes of Xe/Cu(111) were included in the calculation.
The contribution of other modes can be safely neglected in the mul-
tiphonon regime due to their much weaker coupling to He atoms (see
Chapter 4 and references [54, 57, 55]). The frequency of the flat mode
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Figure 9.9: Comparison of experimental and EBA TOF spectrum for
He — Xe/Cu(111) collision system. Full line: Experimental TOF spec-
trum. Dotted line: TOF spectrum in the EBA.

was set to wg = 2.62 meV in accordance with the lattice dynamics cal-
culations. The delta functions in (9.2) were broadened into lorentzians
® to account for finite S-phonon lifetime and experimental resolution.

9.7.2 He — Xe/Cu(001)

A similar calculation was performed for the He — Xe/Cu(001) collision
system with the frequency of the S mode wg = 2.71 meV. The results
are displayed in figure 9.10. The agreement with the experimental data
is somewhat less satisfactory, possibly due to a more disordered Xe
overlayer than in the case of the Xe/Cu(111) system which is seen by
the magnitude of the no-loss peak (AE = 0). The small peak at AE=-
1.5 meV in the experimental TOF spectrum is due to the excitation of
the Cu(001) Rayleigh wave mode. The theoretical peak at AE = —2.71
meV was broadened more than the other peaks to account for smaller
lifetime of S phonon in the region where its dispersion curve meets the

5The peaks should actually be of the so called Voigt profile which is a convolution
of gaussian (experimental resolution) and lorentzian (lifetime) function.
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Figure 9.10: Comparison of experimental and EBA TOF spectrum
for He — Xe/Cu(001) collision system. Full line: Experimental TOF
spectrum. Dotted line: TOF spectrum in the EBA.

dispersion curve of the Cu(001) Rayleigh wave phonon ¢. Note also that
the multiphonon spectrum in the EBA has a peak at AE = 0 meV.
This peak corresponds to the scattering events in which equal number
of S phonons is emitted and absorbed. These multiphonon events are
seen at zero energy transfer. There are no observable anharmonic shifts
in the experimental TOF spectra in figures 9.9 and 9.10 which means
that all S derived peaks are equally separated within the experimental
uncertainty. If all phonons were excited on one Xe atom, then the
anharmonic shifts deriving from the Xe-Cu interaction potential should
be visible [55]. The fact that they are not visible, points to a particular
physical picture of the phonon excitation mechanism. Namely, the
phonons are excited in the surface as a whole and not on a particular
surface atom. Therefore, the multiphonon scattering event with e.g.
5 phonons emitted does not correspond to one Xe atom being excited
from e.g. n = 0 to n = 5 level of the harmonic oscillator, but more
likely to five Xe atoms being excited from n = 0 to n = 1 levels.

6This feature cannot be reproduced from the simple lattice dynamical model of
the incommensurate Xe adlayers on Cu(001) surface because the Cu(001) substrate
was assumed to be completely rigid in this model, but the RW is clearly observed
in the experimental TOF spectrum
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Figure 9.11: TOF spectra for He — Cu(001) collision system along
<110> -azimuth. Thin full line: Experimental TOF spectrum. Thick
full line: TOF spectrum in the EBA. Thick dotted line: TOF spectrum
in the EBA without the DWBA contributions.

This a posterior: justifies the assumption of linear coupling to atomic
displacements which was introduced in all atom-target hamiltonians
discussed in the previous chapters.

9.7.3 He — Cu(001)

Figure 9.11 displays the multiphonon calculation for He — Cu(001)
collision system.

This calculation is much improved (concerning the model of the po-
larization vector) over the one reported in [54], and the overall agree-
ment between the experimental and EBA results is much better. Only
the coupling to the RW mode of the Cu(001) surface was considered.
We have observed in our calculations that the overall agreement be-
tween the theoretical and experimental results decreases as the devia-
tion of the scattering angle from the specular increases [54] (see figure
9.14). This is not too surprising since the EBA was constructed to
work in ”close-to-specular” conditions 7. Additionally, according to

"The term ”quasielastic” in inverse space, mentioned many times in Chapter 8,
means ” close-to-specular” in direct space.



CHAPTER 9. COMPARISON OF... 123

reference [56], the effects of correlations neglected in the EBA, become
nonnegligible for such high incident projectile energy (113 meV). Also,
the static surface corrugation becomes more pronounced as the turning
point gets closer to the surface (see figure 3.1) i.e. as the projectile inci-
dent energy increases, so that the neglect of static surface corrugation
becomes a questionable approximation for very high projectile ener-
gies. The calculation represented by the full thick line includes the full
exponent exp(2W (7, R)). Dotted thick line represents the EBA calcu-
lation with the DWBA contribution subtracted. This means replacing
exp[2W (1, R)] in equation (8.53) with exp[2W (7, R)] — 2W (7, R). Al-
though the Debye-Waller exponent is quite large (21W(0,0) = 6.2 8),
the single phonon emission (absorption) peaks corresponding to the
RW mode of Cu(001) are still visible, although probably not in the ex-
perimental TOF spectrum. This could be due to low energy resolution
of & 7 meV [94, 95] at this high incoming energy. The angular inte-
grated spectrum (as a function of exchanged energy) can be obtained
by summing (integrating) the angular resolved TOF spectrum over all
lateral wave vectors exchanged (AK). This calculation is presented in
figure 9.12

Note that the calculation with the single phonon exchange contribu-
tion included becomes identical to the calculation with this contribution
excluded beyond |AE| = 18.0 meV which is the maximum frequency of
the RW mode throughout the surface Brillouin zone. Note also that the
distribution denoted by the full line is quite close to the gaussian dis-
tribution, slightly wider on the loss side. Under extreme multiphonon
conditions, the EBA can be shown to produce gaussian like spectra
(both in AK and AFE coordinates) centered around the mean values
< E>=p, < AK, >=0 and < AK, >= 0 [56].

9.7.4 He — Xe(111)

The angular resolved TOF spectrum in the single-phonon regime for
He — Xe(111) collision system was shown in figure 6.2. Concern-
ing the present form of numerical procedures for evaluation of mul-
tiphonon TOF spectra, this system is not different from the system
He — Cu(001) except for different interaction potential, maximum RW
frequency, the shape of the first Brillouin zone, and for the details of the
polarization vector dependence on a wave vector. Since the RW mode

8Tt is often said that the true multiphonon scattering conditions are achieved
when 2W(0,0) = 6 [94, 95], although it is not quite obvious (at least not to the
author) what it actually means.
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Figure 9.12: Angular unresolved spectrum in the EBA.Full line: EBA.
Dashed line: EBA without first Born contributions.

of Xe(111) surface is much softer than the RW mode of the Cu(001)
surface, the multiphonon conditions can be achieved at much lower
projectile incident energies and the target temperature.

9.8 Mean energy transfer
in atom-surface scattering

Mean energy transfer in the EBA can be obtained from equation
(8.57). This is the mean energy transferred in the course of a collision
irrespective of the final angle in which the scattered atom continues
to move. This information cannot be obtained from the typical TOF
experiment. However, one can obtain the average energy transferred
by the scattered projectile atoms which scatter into the final angle 0y,
both experimentally and theoretically. We call this quantity the angular
resolved enerqgy transfer. It is calculated as

EBA S22 (AE)d(AE)NPPA(AE, AK(AE))
e (€, Ts,05,0p) = /%, d(AE)NEBA(AE, AK(AE))
E)d(AE)N“?(AE, AK(AE))

(
J% d(AE)Ne?(AE, AK(AE)) (9-6)

,U:Ip(ei: T57 0’i7 ef) =
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Figure 9.13: Angular resolved energy transfers for the He —
Xe/Cu(111) collision system as a function of the sample temperature
for four different He incident energies. Symbols: Experimental data.
Lines: The EBA calculation.

where pZ54(e;, Ts, 0;,0;) and uc® (e;, T's, 6;, 0;) are angular resolved en-

ergy transfers in the EBA and the experiment, respectively.

9.8.1 He — Xe/Cu(111)

Figure 9.13 displays comparisons of the calculated and measured an-
gular resolved energy transfers for the He — Xe/Cu(111) collision sys-
tem. The results are plotted as a function of the sample temperature
for four different He incident energies. The incident and final angles are
fixed to 6; = 50° and 6; = 40.5°, respectively. The agreement between
the experimental and theoretical values for the angular resolved energy
transfer is seen to be very satisfactory.

9.8.2 He — Cu(001)

Figure 9.14 displays the calculation of the angular resolved energy
transfer for the He — Cu(001) collision system. The experimental data
was taken from reference [94].
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Figure 9.14: Angular resolved energy transfers for the He — Cu(001)
collision system as a function of the relative angle, A = 6; — 6;.
Squares: Experimental data. Line: The EBA calculation.

9.8.3 Ne, Ar, Kr — Cu(111)

In this subsection we present the evaluation of equation (8.57) for the
Ne, Ar and Kr — Cu(111) scattering systems. Although there is no
experimental data concerning the mean energy transfer in these scat-
tering systems we have a firm experimental confirmation of the EBA
approach which is based on the measurement of the Debye-Waller fac-
tor for these systems (see figure 9.6). Figure 9.15 displays the mean
energy transfer for Ne, Ar and Kr scattering from Cu(111) surface at
zero temperature of the sample (Ts = 0) as a function of the projectile
incident energy. The incident angle was set to #; = 70°. The results
are in qualitative agreement with the FOM-TA calculation of the mean
energy transfer for Ne, Ar, Kr — Ru(001) scattering systems reported
in reference [21].

9.9 Comments on the applicability of
the EBA to selected scattering systems

The theoretical results obtained by using the EBA and presented in
the preceding section have been shown to agree quite satisfactorily with
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the experimental data, except for very off-specular scattering conditions
which lie in the phase space beyond the applicability of the EBA.

In the case of metallic targets (such as Cu(001)), the disagreements
between the experimental results and the results produced by the use
of the EBA cannot be taken as an evidence of the inappropriateness of
the EBA. Namely, the lattice dynamical approach to metallic samples
may be even more questionable than the use of the EBA.
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Chapter 10

Possible future investigations

Prediction is very difficult, especially of the future.

Niels Bohr

I have seen the future and it is just like the present, only
longer.

Kehlog Albran
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130 CHAPTER 10. FUTURE INVESTIGATIONS

The formalism developed in the preceding chapters to describe in-
elastic atom-surface scattering was based on several assumptions and
approximations which deserve further comments.

e The corrugation of the interaction potential was completely ne-
glected in all the calculations presented. One does not expect
this effect to be of crucial importance for the atom-(metal sur-
face) scattering, but it may become important for the systems
where the charge delocalization is negligible (e.g. for the He —
Xe(111) scattering system). The investigation of the interplay
between elastic and inelastic processes in the EBA formalism is
in progress [87].

e The approximation of the interaction potential with the Morse
potential can be erroneous at extremely low incident projectile
energies. This approximation can be easily corrected by intro-
ducing numerically calculated wave functions [40]. However this
slows down the calculations and restricts the size of the param-
eter space (temperature of the sample, incident energy, incident
angle, projectile atom mass etc.) amenable to examination. The
approximation of Q dependence of vq, as in equation (6.20), does
seem to be quite good, at least for the incident energies higher
than 1 meV [40].

e The vibrational dynamics of the target was obtained by assuming
the Born-Oppenheimer approximation (BOA) for the electrons of
the target atoms. This can be questionable for metallic targets
[35] and could be the reason of a failure of the DWBA approxi-
mation to describe the so called "anomalous” intensities of longi-
tudinally polarized modes observed on some metal surfaces [35].

However, recent calculations do not support the break down of
the BOA in the studied regime [4].

e Anharmonic effects in the vibrations of the target have not been
taken into account. This may prove of importance for some cal-
culations reported in Chapter 6 and Chapter 8. Although this
effect was approximately accounted for in the earlier publication
[7], a nonphenomenological approach of including this effect may
be required.

e For the evaluation of the multiphonon TOF spectra in the EBA, a
precise information about dispersions and polarization vectors of
the modes is needed for all directionsin the surface Brillouin zone.
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This is not the case in the DWBA where we need this information
only along the direction of the lateral component of projectile’s
incident wave vector. For multiphonon TOF spectra presented in
this thesis, simple analytical models for the dispersion relations
and polarization vectors as a function of the direction in the re-
ciprocal space were used. These models were, however, guided
by the lattice dynamics calculations. It would be highly desir-
able to use the complete output of lattice dynamics calculation
as an input for the EBA calculation. This requires a lot of re-
served computer memory and CPU time, but some progress in
this direction has already been achieved.

e The EBA itself is an approximation. Although the EBA has
proven very successful in describing the scattering spectra pre-
sented in Chapter 8, it would be desirable to theoretically assess
the validity of the EBA for every scattering system and every set
of scattering parameters studied. These investigations have been
carried out for a restricted number of collision systems [56] and
for other systems of interest they are under way.
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Chapter 11

Summary

If you permit yourself to read meanings into (rather than
drawing meanings out of) the evidence, you can draw any con-
clusion you like.

Michael Keith, "The Bar-Code Beast”, The Skeptical En-
quirer Vol 12(4)

A conclusion is the place where you got tired of thinking.

Anonymous
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134 CHAPTER 11. SUMMARY

In this work I have described all the prerequisites needed to derive
the Exponentiated Born Approximation (EBA) and apply it to the
atom-surface scattering problems. The validity of the EBA has been
tested in numerous comparisons with the existing experimental data.
Although the EBA picks up only a selected class of the scattering am-
plitudes to all order, it is probably the most promising fully quantum
formalism of all the previously used to model inelastic scattering of
thermal energy inert atoms from surfaces. As the EBA smoothly inter-
polates between the single-phonon regime of scattering (DWBA) and
multi-phonon scattering regime (FOM-TA), it can be used without too
many restrictions in a large region of the scattering parameter space.
The application of the EBA to the problems of technological interest
(e.g. transfer of energy between the interstellar gas and the space ve-
hicles) is currently in progress [57].



Appendix A

A simple illustration of the
normal modes calculations

For every problem there is one solution which is simple, neat,
and wrong.

H.L. Mencken
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Figure A.1: A simplified vibrational model of epitaxially grown thin
film at Q = 0.

The aim of this Appendix is to illustrate a simple application of the
normal modes calculation. The example chosen here is directly related
to the problem of finding the normal vibrational modes of a thin film
epitaxially grown onto a low index surface plane of the substrate.

For small values of the phonon lateral wave vector Q, a large number
of the atoms in a slab (crystal plane) moves coherently i.e. in phase.
For Q = 0, the whole slab of atoms moves as a rigid body. Therefore,
the forces acting between the atoms in a slab are not of importance in
this case. Only the forces acting between the slabs matter. Therefore,
we can simplify the geometry of the semi-infinite crystal by introducing
a one-dimensional model of the crystal as in figure A.1.

M represents the mass of the adsorbed film slab per slab unit cell,
ki is the force constant (spring ”stiffness”) acting between the slabs of
the adsorbed film and k5 is the force constant connecting the substrate
material with the slab of the film closest to the substrate. The substrate
itself is represented here as completely rigid and infinitely massive sup-
porting material. Therefore, we shall neglect all the degrees of freedom
connected with the substrate. For the Lagrangian of the system, L, we
can write

—v
M (n),)?

N-1
(k1 + ko)t + ki + > 2k,

n=2

o= RN
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Figure A.2: Eigen-frequencies of adsorbed Ag film as a function of a
number of Ag monolayers, N

1 N—-1
+ §k1 Z (M1 + Moy 17n)- (A1)

=1

3

Here T" and V represent the kinetic and potential energy of the system,
respectively, 7, is the generalized displacement coordinate of the n-th
film slab where n = 1 corresponds to the slab closest to the supporting
substrate. NV is the number of the slabs (monolayers) in the adsorbed
film.

Clearly, for the potential and kinetic energy matrices defined in
equations (4.4) and (4.5), respectively, we can write ':

[k +ky —ky 0 0o .. 0 0 0 ]
—k1 2k —k; 0o .. 0 0 0
0 —ky 2k -k ... O 0 0
Vij = (A.2)
0 0 0 0 ... =k 2k -k
0 0 0 0 .. 0 -k Kk

LOf course, special care must of in the cases when N =1 and N = 2.
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Figure A.3: Eigen-frequencies of three-monolayer Ag film as a function
of force constant k.

and
[ M 0 0 0 0 7
0 M 0 0 O
Tzij = ) ) =M. Inxw, (A3)
| 0 0 0 .. M |

where 1y is N X N unit matrix. The normal frequencies of the system
can be found by solving equation (4.12) which can be done analytically
at least for N < 3. For larger N’s one can numerically solve equation
(4.12) by using well known diagonalization techniques [96]. Figure A.2
shows the normal frequencies of the system as a function of the number
of slabs N. For this calculation we have taken M = 107.87 amu, and
ki = 32.4 N/m. These parameters correspond to silver slabs and force
constant k; can be shown to produce a correct speed of sound in silver
[81, 51, 97]. Note that for large values of N it becomes sensible to
talk about the dispersion (wave vector) of the longitudinal mode of Ag,
i.e. sound. The value of force constant ks depends on the nature of a
supporting material. In figure A.2 we have taken ky = k;. Figure A.3
displays the normal frequencies of the system with 3 Ag monolayers
(N = 3) as a function of k, force constant.

The modes characterizing the vibrations of thin films at Q = 0 are
called organ pipe modes and were studied both experimentally (by the
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use of helium atom scattering technique) and theoretically [98, 99].
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