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A complete form of the van der Waals dispersion interaction between an infinitely long anisotropic
semiconducting/insulating thin cylinder and an anisotropic half space is derived for all separations
between the cylinder and the half space. The derivation proceeds from the theory of dispersion
interactions between two anisotropic infinite half spaces as formulated in Phys. Rev. A 71, 042102
(2005). The approach is valid in the retarded as well as nonretarded regimes of the interaction and
is coupled with the recently evaluated ab initio dielectric response functions of various
semiconducting/insulating single wall carbon nanotubes, enables the authors to evaluate the strength
of the van der Waals dispersion interaction for all orientation angles and separations between a thin
cylindrical nanotube and the half space. The possibility of repulsive and/or nonmonotonic dispersion
interactions is examined in detail. © 2010 American Vacuum Society. [DOI: 10.1116/1.3416904]

I. INTRODUCTION

Single walled carbon nanotubes (SWCNTSs) are unique
materials with chirality-dependent dielectric properties1 that
make a clear imprint on their van der Waals-dispersion
interactions.”” Several experimental procedures have been
proposed to exploit the differences between these properties
in order to separate SWCNTSs by chirality (see Ref. 3 and
references therein). Different separation mechanisms have
been suggested and tested® but we are still some way off to
separate a nanotube mixture into its single chirality compo-
nents. Nevertheless, techniques such as size-exclusion chro-
matography (SEC) coupled to decorating the SWCNTSs with
ss-DNA seem very promising. In order to understand the
interaction of a SWCNT with a substrate in the context of
SEC the details of the van der Waals dispersion (vdW) inter-
actions are quite relevant and their details need to be sorted
out.

SWCNT materials consist of bundles of aligned carbon
nanotubes that can contain large number of carbon

“Electronic mail: podgornr@mail.nih.gov

nanotubes’ so that the bundle itself can be considered as a
bulk material with anisotropic dielectric properties and a
large exposed surface. In the bundle the SWCNTs are kept
together by attractive vdW interactions. One may be inter-
ested to compute the energy needed to separate one of the
tubes from the rest of the bundle, depending on the tube’s
position in the bundle. We are thus led back again to the
problem of vdW interactions between a single SWCNT and a
substrate.

For all such and similar applications a knowledge of vdW
interactions between materials of anisotropic dielectric prop-
erties is thus a requisite. The vdW interactions between two
semiconducting/insulating thin cylinders have already been
examined in the nonretarded” and retarded® regimes, and as
the next logical step, in this article we examine the vdW
forces between an optically anisotropic infinite cylinder and
an optically anisotropic half-space substrate. Our approach
does not consider finite-size effects, i.e., the cylinder that we
examine is always infinitely long and infinitely thin. Infi-
nitely thin in this context means that the thickness of the
cylinder is the smallest length scale in the system. This ef-
fectively sets the range of applicability of our method for the
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FiG. 1. Illustration of the system of interest to us with some of the quantities
required in the derivation of dispersion interaction.

evaluation of vdW interactions.® For separations between the
cylinder and the substrate on the order or less than the thick-
ness of the cylinder, a different approach is in order and has
indeed been derived elsewhere.”

In what follows the axis of the thin cylinder is assumed to
be always parallel to the half-space surface. The principal
optical axes of the half space and the cylinder may however
be nonparallel, making an angle that we denote by 6. The
coordinate system is oriented so that the dielectric tensor of
the half space is diagonal. The transverse responses are iso-
tropic in the plane perpendicular to the longitudinal axis,
both for the cylinder and in the half space. The system that
we consider is sketched in Fig. 1. It is our aim to derive
closed-form expressions for the vdW dispersion interaction
energy in such a system, accounting for the effects of
retardation exactly, which shall enable us to estimate their
importance.

Il. DERIVATION OF THE FORMULAS FOR
DISPERSION INTERACTION

In what follows we will calculate the vdW interaction
between an extended cylindrical object and a semi-infinite
slab of a dielectric material. The vdW interaction is of course
nothing but the Casimir interaction evaluated for realistic,
i.e., nonmetallic boundary conditions at a finite value of the
temperature.7’8 The theory of vdW interactions between two
semi-infinite half spaces was set fourth in all its detail by
Lifshitz in 1955.”® From the interaction free energy between
two half spaces one can extract the interaction between a
cylinder and one semi-infinite half space by assuming that
the other half space is a dilute assembly of anisotropic cyl-
inders. The derivation closely follows the arguments of
Pitaevskii’ for evaluating the vdW interactions between iso-
tropic impurity atoms in a homogeneous fluid and has been
used by us previously in the evaluation of the vdW interac-
tions between two cylinders.6

The Pitaevskii approach to vdW interactions between two
small objects or a small object and a half space works only if
the object, i.e., the cylinder in this case, has a sufficiently
small radius, a, which must be the smallest length scale en-
tering the problem. In this case the single scattering approxi-

J. Vac. Sci. Technol. B, Vol. 28, No. 3, May/Jun 2010

Siber et al.: Optically anisotropic infinite cylinder above an optically anisotropic half space

C4A18

mation, which is what the Pitaevskii approach amounts to if
compared to the exact general formulation,'” gives the low-
est order contribution in terms of the cylinder radius. Fur-
thermore, its dielectric response should be finite for all Mat-
subara frequencies including zero, and thus should most
notably not contain the Drude peak at zero frequency as pre-
sented in idealized metals.® Metallic cylinders are thus ex-
cluded from our consideration. With the above two provisos
our approach yields the lowest order single scattering ap-
proximation to the vdW interactions between a cylinder and
an anisotropic dielectric half space, if compared to the exact
general multiple scattering formulation.'”

As in Ref. 6, we start the derivation of the vdW interac-
tions between an optically anisotropic cylinder and a planar
substrate from the expression for dispersion interaction be-
tween two anisotropic half spaces derived by Barash and
co-workers.!! The two half spaces [“left” (1) and “right” (2)]
are separated by ¢ and their principal optical axes are parallel
to the surface planes of the two half spaces but rotated with
respect to each other by angle 6. For our purposes, we con-
sider the right half space (2) to be composed of aligned cyl-
inders of radii a at volume fraction v, with € , and € as
the transverse and longitudinal dielectric response functions
of the cylinder materials [note that here we separate the no-
tion of material the cylinder is made of (quantities denoted
by superscript ¢) from the material that the cylinders make,
i.e., we separately consider the dielectric response of an in-
dividual cylinder from the response of the material made of
cylinders—the two concepts can be easily related as demon-
strated in Ref. 7]. We treat the left (1) half space as an an-
isotropic continuous medium with €, , and € as its trans-
verse and longitudinal dielectric responses. We can formally
“rarify” the right medium using a well defined mathematical
procedure (see Refs. 7 and 6) that yields the interaction be-
tween an individual cylinder and the left half space [g(€, 6)].

We can write the dielectric response of the right half
space as a function of the dielectric responses of individual
cylinders (assuming local hexagonal packing symmetry, see
Ref. 7, p. 318) as

62’” = 63(1 + UA”),

20A
'52,L='53<1+—1_UAL ) (1)
1

where €5 is the dielectric response of the isotropic medium
that the cylinder is immersed in (and that permeates the
space between the cylinders in the right half space as we
formally rarify it). The relative anisotropy measures of the
cylinder are given by
A= é’ﬂ A=

C
€1~ 6
€, +6 €3

2)

Using these substitutions, the dispersion interaction between
the two half spaces becomes a function of the volume frac-
tion, v.

To obtain the interaction free energy per unit length of the
cylinder, g(€, 6), between a single cylinder and a half-space
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substrate, one takes the interaction free energy per unit sur-
face area between two half spaces, G(€, 6,v), and expands it
to the first order in v. It then follows that’

dG(£,0,v)

Ng(f’g):_ a{

3)
where G({,6,v) is given by Barash’s interaction formula'’
rewritten so as to account for the fact that the right half space
is made of aligned cylinders at volume fraction v. The dis-
tance between the cylinder and the substrate is denoted by ¢,
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and N=v/(ma®) (see Fig. 1). One then Taylor expands
G(¢, 0,v) with respect to v and differentiates the first order
term with respect to ¢, obtaining a quantity proportional to
g(€,0), as can be seen from Eq. (3). This procedure yields a
result that is fairly complicated,

2 o 2 N
5(.0)="C5 | oag f d¢{e-”ﬂ3—}, (4)
4m 2 Jo 0 D

where

A -
N= (E” - AJ_>{Q2 sin’(¢p+ 0) X [f(P)e, (O sin® d(py | +p3) + p1p3(ps—pi.1)) + (€11 — &) (ps(p1 1 +2p3) — 0]

~2f(P)€. L p1. L p3[207 sin ¢ cos @ sin(¢+ 6) + p3 sin® 6] + f(P)e; L p3[O7 sin® Plpy | — p3) + p1.Lps(prL +p3)]

+p3(&— €. 1) (0 +p 1)} + 2f(B)A € [0? sin® $(Q%py. . — p3) + p1. 1 p3(O° cos(2¢) +py 1 p3)] - A (€, — €)

X[(Q*+ p3)(Q + p1.Lp3) + (0> = p)(Q* — py..p3)]

and

D=ps(p; . + P3){€1,Lf(¢)[Q2 sin® p—p;  p3]+ €1 ps
+ep; )} (6)

In the equations above,

2
€ W
_ 2 1,1 %Yy
pl,J__ Q + 2 5
C
Q2 63(1)
C

\'Q ((61 V€)= 1)005 ¢+P1 1~ P11
0 sin” ¢ — P1 L

flg)= ()

and c is the speed of light. Subscript n indexes the (thermal)
Matsubara frequencies and the prime on the summation
means that the weight of the n=0 term is 1/2 (see Refs. 7 and
13 for details). All the dielectric responses should be consid-
ered as functions of discrete imaginary Matsubara frequen-
cies, i.e., as &= eg )—63(10)”) A (iw,) and A((iw,), and
€, (iw,) and € (iw,). The frequencies in the Matsubara
summation are w,=2nmkgT/#.

We have not been able to simplify the expressions further
using the routines from MATHEMATICA. ' However, we did
examine the nonretarded limit of the expressions we derived.
In particular, we have performed the same analytical proce-
dure as specified above, only instead of G({, 8,v), we have
taken lim,_,.. G(£, #,v). We obtained
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(5)
T
g(60) = €32 F(0.9). (8)
where
2
Fiop=2| d¢A£m<¢>[Ai #5428, )eos(p
0
+ 0)] )
and
A (f) = — €. V(e — € )cos’ () +€ /€ . (10)

&+ € V(e AT €, 1)cos?(¢p) + €,1/€ 1

One can easily check that the nonretarded limit of our result
is the same as Eq. (17) of Ref. 2, up to the sign of 6, which
is irrelevant (the result is symmetric with respect to — —06).

lll. NUMERICAL RESULTS FOR THE DISPERSION
INTERACTION

Although the analytical result for the retarded dispersion
interaction is quite complicated it can be easily evaluated
numerically. As in Ref. 6, we shall concentrate on single wall
carbon nanotubes as the prototype anisotropic cylinders. We
obtain their spectral properties from the ab initio numerical
methods in the optical range, as detailed in Ref. 2. We first
construct the left half space by using a kind of inversion of
the “rarification” procedure, i.e., we construct its response
from the response of individual cylinders that are hexago-
nally arranged and perfectly aligned in the half space. The
arrangement and geometry of cylinders are illustrated in Fig.
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FiG. 2. Arrangement of cylinders and specification of distances used to
construct the dielectric response of the left half space.

2 (this should be thought of as the cross section of the half
space in the plane of transverse response).

The dielectric response of such a material can be con-
structed from Eq. (1) presuming one sets in the appropriate
v, which can be easily calculated from geometry. It is easy to
see that

2

21a 2

v = = = .
Qa+b)*\3 32+ (b/a))

(11)

Note that v is by construction always smaller than 1, even
when b=0, which is as it should be. Since we are interested
in carbon nanotubes, we take »=0.34 nm, which is the dis-
tance between graphene planes in graphite. This gives v
=0.43 for a=0.373 nm, which is the radius of (6,5) carbon
nanotubes.” The (6,5) carbon nanotubes are semiconducting
and therefore appropriate for the illustration of the method
we developed. We are now in a position to evaluate the in-
teraction between a (6,5) carbon nanotube and a half space
made of hexagonally arranged (6,5) carbon nanotubes. The
half space can be thought of as an infinite bundle of
SWCNTs. Our results are contained in Fig. 3. The calcula-
tions were performed for 8=m/2, i.e., when the longitudinal
axes of the cylinder and the half space are mutually perpen-
dicular (panel a), and for 6=0, i.e., when the longitudinal
axes of the two subsystems are parallel (panel b). The me-
dium permeating the space around the cylinder is vacuum, so
&(iw)=1, Vo.

We should add here that for illustrative purposes we dis-
regarded the finite wall thickness of the (6,5) SWCNT and
approximated it as if filled completely with the dielectric
material. Taking into account the finite thickness of the wall
would require a more careful modeling of its effective di-
electric response3 and thus introduce additional parameters
that would complicate the understanding of the retardation
effects in van der Waals—dispersion interactions between
this SWCNT and the half space, which is our primary aim in
this article. Also, once the surface-to-surface separation be-
tween a SWCNT and the half space is greater than approxi-
mately two SWCNT outer diameters,” this approximation
turns out to work quite well. In the case the (6,5) SWCNT,
this would mean greater than 1.5 nm. We thus excluded sepa-
rations below 2 nm from all the graphs. At separations less
than about 2 nm one would also need to derive the small
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FiG. 3. (Color online) vdW interaction for a (6,5) carbon nanotube above a
half space made of (6,5) carbon nanotubes as a function of distance (€3
=1) for O=m/2 (panel a) and 6=0 (panel b). The values of dispersion
interaction with retardation included are indicated by (red) pluses. The non-
retarded values are indicated by (green) X’s. The power-law behaviors €~*
and €3 are denoted by dotted and dashed lines, respectively.

separation limit of the interaction free energy, which we do
not consider here (for two interacting SWCNTs it was con-
sidered in Ref. 2).

Let us first estimate the importance of retardation effect
for distances comparable to the radius of the (6,5) carbon
nanotubes. For €=4 nm, retarded value of the dispersion
interaction is —0.011 52 kg7T/nm, while the nonretarded
value is —0.012 44 kzT/nm (6=7/2). This means that the
contribution of retardation at this distance is about 7%. In-
terestingly, the contribution of retardation is about three
times larger than was the case in cylinder-cylinder interac-
tion studied in Ref. 6. One can visually detect differences in
the functional behavior of retarded and nonretarded interac-
tions already at €=10 nm. When €>100 nm, the €~ de-
pendence of the retarded interaction becomes clearly visible,
while the nonretarded interaction is proportional to the in-
verse third power of the separation for all separations, as can
also be seen in Eq. (8). One can obtain the £~* dependence of
the retarded interaction for large separation using the scaling
arguments as follows. We use dimensionless combination of
variables

SR

0
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FiG. 4. (Color online) Dielectric responses (along imaginary axis) of the
(6,5) SWCNT. The (red) pluses and (green) X’s show the longitudinal and
transverse responses, respectively. On the x-axis is the (shifted) Matsubara
frequency index.

w,

p=—H+. (12)

c

This substitution is particularly efficient in the 7— 0 limit
when the summation over n can be converted into an inte-
gration over a continuous variable p. We have

fi
> - cfdp,

. ZWkBTE

1
deQ—)? udu. (13)

Examining now the A/ D ratio in Eq. (4) we see that it is
proportional to Q times some complicated dimensionless
function containing dielectric responses and angles. Gather-
ing all the dimensionalization constants together we have
that

i 2
lim g(6.6) = £ 52(ex(0).4(0).4.(0).€1,(0).1, 0. ).

(14)

where in the T— 0 limit, only the static dielectric response
remains. We see that in this limit the interaction scales with
inverse fourth power of separation (£7%).

One notes that the differences in interaction when 6
=/2 and =0 are very small, i.e., that the anisotropy of
interaction is weak. This is mostly due to the fact that the
perpendicular and longitudinal responses of (6,5) carbon
nanotubes are quite similar, as shown in Fig. 4. The retarded
dispersion interaction for €=4 nm and 60=0 is
—0.011 86 kgT/nm, while the corresponding value for 6
=m/2 is =0.011 52 kzT/nm (3% difference). We show how
the retarded interaction changes with angle 6 for €=4 nm in
Fig. 5.
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FiG. 5. (Color online) Retarded dispersion interaction between (6,5)
SWCNT and a half space made of (6,5) SWCNTSs as a function of the angle
0 between the longitudinal axes of the two subsystems. The distance be-
tween the two subsystems is €=4 nm.

IV. EFFECTS OF RETARDATION AND
NONMONOTONIC BEHAVIOR OF DISPERSION
INTERACTION: DESIGNING A MEDIUM

We want to see whether the formulas derived thus far
support a nonmonotonic behavior of dispersion interaction.
The nonretarded interaction cannot change its flavor, i.e., it
will always be strictly attractive or repulsive, irrespectively
of distance ¢, depending on the properties of the spectra and
whether the total sum over Matsubara frequencies is positive
or negative.7 The retarded interaction is different, however. It
is known that the retardation effectively restricts sampling of
the frequency region, depending on the distance between the
objects.7 For larger distances, the high frequency portion of
the spectra is effectively cut off by retardation effects. This is
illustrated in Fig. 6 in the example of vdW interaction be-

50 100 150 200 250 300
m

FiG. 6. (Color online) Illustration of the cutoff effect of retardation for a
(6,5) carbon nanotube interacting with the gold half space in vacuum—the
partial sums are shown for several different separations € between the
SWCNT and the half space, as indicated. The x-axis is the order of the
summation, see Eq. (15).
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FiG. 7. (Color online) Retarded (crosses) and nonretarded (circles) vdW
interactions between a (6,5) CNT and golden half space as a function of
distance. The parameters of the medium are m=17, =2, and £=6.9. The
inset shows how the retarded vdW interaction depends on & for £=6.9 and
E=1.1.

tween a (6,5) carbon nanotube above a golden half space in
vacuum. The dielectric response for gold along imaginary
axis has been constructed from the absorption data as ex-
plained in Ref. 7. The quantity shown on the y-axis is de-
fined as

s [Gdrf3md¢le P NID]
32 JodrfiTd¢le 2 NID]

w(m) = (15)

see Eq. (4). The cutoff effect of retardation will be more
complicated when €5 also has structure, i.e., when the me-
dium between the half space and the cylinder is not vacuum.

We shall now attempt to design the dielectric response of
the medium which could produce potentially interesting ef-
fects in the vdW interaction. One possible way to do this is
to combine two forms of the medium response, e;=¢ [vacu-
umlike, the nonretarded half-space isotropic cylinder (€, |
=€,=€,) interaction is attractive when £<e¢,€ or &
> €, €] and e;=(€,+€5)/2.°

The expression for the medium dielectric response that we
shall use is

h=[1 —f(n,m,a)]5+f(n,m,a')l;cM, (16)
where
f(n,m,o) = %{1 +tanh(%>]. (17)

Function f(n,m,o) is used as a “switch” between the two
functional behaviors of the medium dielectric response,
switching at n=m with an effective width of o. We shall now
illustrate the effect of the designed medium on the interac-
tion of a (6,5) SWCNT with golden half space. Figure 7
displays retarded and nonretarded values of dispersion inter-
action for medium constructed with parameters m=17.0, o
=2.0, and £=6.9 (£=7.1).
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0 50 100 150 200 250

FIG. 8. (Color online) Dielectric responses [gold, SWCNT (6,5), and me-
dium] used in the calculations displayed in Fig. 7. Two different models of
the medium, differing only in parameter &, are denoted.

This clearly illustrates that the minimum in retarded vdW
interaction is possible, but in order to clearly understand its
origin, a visual inspection of the dielectric responses is
needed, which we show in Fig. 8.

The dielectric response of gold when n=0 is huge and off
the scale in Fig. 8 (6(10)2555.9). Note how small changes in
the medium dielectric response induce large changes in the
position and magnitude of the vdW minimum (compare Figs.
7 and 8). In fact, the minimum in the retarded vdW interac-
tion is extremely sensitive to details of the medium dielectric
response and is easily lost, in our case when £ goes outside
interval (6.5,7.4), all other parameters being fixed.

The same analysis can be repeated for other materials of
the substrate (half space). In Fig. 9 we show the dielectric
responses of the half space made of polystyrene (again an
optically isotropic material), the longitudinal response of a
(6,5) SWCNT, and the medium constructed with m=18.0,
0=30.0, and £=8.4. In this case, due to a large magnitude of
parameter o, the medium dielectric response crosses the

9 .
8 € 4 ,
£
7 7:“./medium ED 0 i
3 > i ]
=)
= O =2t l
~ (-]
W g5 o -3 o C ° |
° (-]
-4
al 3 4 5 6 7 8
E nm
5l [nm] |
2} T __SWCNT (6,5) longitudinal
: polystyrene T
0 50 100 150 200 250

n

FIG. 9. (Color online) Dielectric responses [polystyrene, SWCNT (6,5), and
medium] used in the calculation of the retarded dispersion interaction dis-
played in the inset of the figure.



C4A23

60

40t

20

+

1 10 100 1000
m+1

FiG. 10. (Color online) Contributions of different parts of the spectra to the
total vdW interaction. A w function defined by Eq. (15) is shown on the
y-axis for four different separations between CNT (6,5) and polystyrene:
3.03 nm (a), 3.48 nm (b), 4.59 nm (c), and 8.0 nm (d). The dielectric
response of the medium in these calculations is shown in Fig. 9. A thin
horizontal line denotes the value of w=1 [i.e., the limit lim,,_.. w(m)]. Two
thin vertical lines denote the positions where the medium dielectric response
crosses the longitudinal CNT (6,5) response (see Fig. 9). Note that the vdW
interaction is repulsive for (a) and attractive for (b)—(d).

SWCNT response twice, close to n=3 and n=58. So, the
contributions to dispersion interaction from different fre-
quency regions are repulsive (0<n<3)-attractive (3<n
< 58)-repulsive (n>58) (we should emphasize here that this
conclusion is based on simplified expression for nonretarded
and isotropic variant of the dispersion interaction—see, how-
ever, Fig. 10). The dispersion interaction calculated with
such a medium is shown in the inset of Fig. 9. Note again the
appearance of the minimum, still feeble on the thermal en-
ergy scale (this depends, however, also on the total length of
the carbon nanotube which can be hundreds of microns
long'?).

We now examine the contributions of different parts of
the spectra to the total sum. This is shown in Fig. 10 for the
case of (6,5) SWCNT interacting with polystyrene half space
with a medium designed as displayed in Fig. 9. The values of
w from Eq. (15) are shown for four different SWCNT-
polystyrene distances denoted by (a)—(d), as in the inset of
Fig. 9. Note how the total sum is much smaller from the
contribution that would be obtained, e.g., by summing only
in the infrared and visible regions, this contribution would be
about 50 times larger than the total interaction (for ¢
=348 nm) and of the wrong sign. This indicates that in
order to accurately predict possibly “exotic” effects in dis-
persion interaction, one needs to know the details of dielec-
tric spectra of all the materials in a huge range of frequencies
due to cancellations that may occur in the Matsubara sum (as
is the case here).

V. SUMMARY AND CONCLUSIONS

We have derived the expressions for the dispersion inter-
action between an optically anisotropic semiconducting/
insulating cylinder and an anisotropic semi-infinite substrate.
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The final formulas account for the effects of retardation and
we find that these are relatively small (about 7%) for dis-
tances of the order of € ~4 nm. Their effect becomes pro-
gressively more important with the separation and contrib-
utes about a half of total interaction at € ~40 nm. We have
found that the dispersion interaction may show nonmono-
tonic behavior, changing character from repulsive to attrac-
tive at some crossover distance. This effect is, however, very
fragile and depends strongly on the details of the medium
optical response and its relation to the response of the two
subsystems. 15

The validity of our approach is limited by several condi-
tions based on the observation whether the expansion of the
Barash result'' in terms of the vanishing volume fraction of
anisotropic dielectric cylinders, i.e., the Pitaevskii limit, ex-
ists or not. It exists first of all if the material has a finite
dielectric response for all the frequencies. This condition ex-
cludes the metallic SWCNTs from our consideration. The
additional condition for the existence of the Pitaevskii limit
is that one can disregard the multiple scattering terms'? in the
interaction. This condition stipulates that the radius of the
cylinder should be the smallest length in the system and
excludes all finite-size effects. Although our approach thus
has severe limitations, we are nevertheless convinced of its
usefulness since exact calculations for an anisotropic finite
cylinder above an anisotropic dielectric surface have been
difficult to get.

This article together with Ref. 6 concludes our investiga-
tion of the retarded vdW interactions between two aniso-
tropic dielectric cylinders and between an anisotropic dielec-
tric cylinder and a semi-infinite substrate.

ACKNOWLEDGMENTS

A.S. and R. P. would like to acknowledge partial financial
support for this work by the European Commission under
Contract No. NMP3-CT-2005-013862 (INCEMS) and by the
Slovenian Research Agency under Contract No. J1-0908
(Active media nanoactuators with dispersion forces). A.S.
also acknowledges support by the Croatian Ministry of Sci-
ence (Project No. 035-0352828-2837). R. R. would like to
acknowledge financial support for this work by the NSF
grant under Contract No. CMS-0609050 (NIRT) and the
Dupont-MIT Alliance (DMA). W.Y.C. was supported by
DOE under Grant No. DE-FG02-84DR45170. This study
was supported by the Intramural Research Program of the
NIH, Eunice Kennedy Shriver National Institute of Child
Health and Human Development.

'R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of
Carbon Nanotubes, 1st ed. (World Scientific, Singapore, 1998).

R. F. Rajter, R. Podgornik, V. A. Parsegian, R. H. French, and W. Y.
Ching, Phys. Rev. B 76, 045417 (2007).

R. F. Rajter, R. H. French, R. Podgornik, W. Y. Ching, and V. A.
Parsegian, J. Appl. Phys. 104, 053513 (2008).

‘M. Zheng and E. D. Semke, J. Am. Chem. Soc. 129, 6084 (2007) (and
references therein).

M. J. Bronikowski, Carbon 44, 2822 (2006).

OA. Siber, R. F. Rajter, R. H. French, W. Y. Ching, V. A. Parsegian, and R.
Podgornik, Phys. Rev. B 80, 165414 (2009).



C4A24

C4A24  Siber et al.: Optically anisotropic infinite cylinder above an optically anisotropic half space

042102 (2005); both papers contain a typo that was corrected in Ref. 12.
25 N. Munday, D. lannuzzi, Yu. Barash, and F. Capasso, Phys. Rev. A 78,

Cambridge, 2005).
®R. H. French e al., Rev. Mod Phys. (2010) (in press). 029906 (2008).
Byu. S. Barash and A. A. Kyasov, Sov. Phys. JETP 68, 39 (1989).

°L. P. Pitaevskii, Sov. Phys. JETP 10, 408 (1960).
10 .
T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. Lett. 99, “Wolfram Research, Inc., MATHEMATICA, Version 7.0, Champaign, IL

170403 (2007). (2008)
"Yu. S. Barash, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 21, 163 (1978); J. 15 ’ .
"M. Elbaum and M. Schick, Phys. Rev. Lett. 66, 1713 (1991).

N. Munday, D. Iannuzzi, Yu. S. Barash, and F. Capasso, Phys. Rev. A 71,

V. A. Parsegian, Van der Waals Forces (Cambridge University Press,

J. Vac. Sci. Technol. B, Vol. 28, No. 3, May/Jun 2010



